Skip to main content
Log in

Tree root architecture: new insights from a comprehensive study on dikes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study aimed at disentangling the respective influence of species, environment, root size and root type in tree root architecture.

Method

The root system of 106 adult trees from ten species was carefully extracted from French dikes. Root length and proximal diameter, length and diameter of root segments and branch insertion diameter were measured. Root branching and tapering rates, segment taper, classical (P) and new architectural parameters related to branching patterns were computed.

Results

Two contrasting root types called “running” (R) and “short” (S), were identified from growth and architectural parameters. Compared to S roots, R roots were longer for an equivalent proximal diameter and singled out with lower tapering rate, branching rate and segment taper and with smaller branches. Their main axis lost less in diameter at branching point for branches of the same size. Tree species had little influence on these architectural parameters. The effect of soil material (coarse vs fine) was significant mainly on root size, on branching rate in fine material, and only secondarily on some branching patterns for running roots and on segment taper. The new architectural parameters describe branching patterns more accurately than classical ones.

Conclusion

This study provides an original insight in tree root architectural analysis, proposing a new root typology and innovative parameters for the description and modeling of root architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The name of root size classes and root types (Big vs Large, Little vs Small, Running vs Long, … where chosen to prevent redundancies in the abbreviations (S for small and short, L for large and long) when combining these two factors (see tables and figures).

References

  • Atger C (1991) L’architecture racinaire est-elle influencée par le milieu? L’arbre, biologie et developpement hors série:71–84

  • Atger C, Edelin C (1994a) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975

    Article  Google Scholar 

  • Atger C, Edelin C (1994b) Sratégie d’occupation du milieu souterrain par les systèmes racinaires des arbres. Ecologie 49:343–356

    Google Scholar 

  • Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed Central  PubMed  Google Scholar 

  • Barthélémy D, Blaise F, Fourcaud T, Nicolini E (1995) Modélisation et simulation de l’architecture des arbres : bilan et perspectives Revue Forestière Française 47:71–96

  • Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul H-P (2013) A statistical approach to root system classification Frontiers in plant science 4:doi: 10.3389/fpls.2013.00292

  • Collet C, Lof M, Pages L (2006) Root system development of oak seedlings analysed using an architectural model. Effects of competition with grass. Plant Soil 279:367–383. doi:10.1007/s11104-005-2419-9

    Article  CAS  Google Scholar 

  • Cordoba-Rodriguez D, Vargas-Hernandez JJ, Lopez-Upton J, Munoz-Orozco A (2011) Root growth in young plants of Pinus pinceana Gordon in response to soil moisture. Agrociencia 45:493–506

    Google Scholar 

  • Core Team R (2010) R: a language and environment for statistical computing vol R foundation for statistical. Computing, Vienna

    Google Scholar 

  • Coutts MP, Lewis GJ (1983) When is the structural root system determined in Sitka spruce? Plant Soil:155–160

  • Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34

    Article  CAS  Google Scholar 

  • Danjon F, Bert D, Godin C, Trichet P (1999a) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63

    Article  Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258

    Article  CAS  Google Scholar 

  • Danjon D, Fourcaud, Bert (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400

    Article  PubMed  Google Scholar 

  • Danjon F, Caplan JS, Fortin M, Meredieu C (2013a) Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster Frontiers in Plant Science 4 doi:10.3389/fpls.2013.00402

  • Danjon F, Khuder H, Stokes A (2013b) Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model PLoS One 8 doi:10.1371/journal.pone.0083548

  • Dunbabin V et al (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124

    Article  CAS  Google Scholar 

  • Dupuy F, Stokes D (2005) A density-based approach for the modelling of root architecture: application to maritime pine (Pinus pinaster Ait.) root systems. J Theor Biol 236:323–334

    Article  CAS  PubMed  Google Scholar 

  • Eis S (1974) Root system morphology of Western Hemlock, Western Red Cedar, and Douglas-Fir Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere:28–38

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77. doi:10.2307/2433011

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1992) Fractal characterization of root system architecture. Funct Ecol 6:632–635

    Article  Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Forde BG (2009) Is it good noise? the role of developmental instability in the shaping of a root system. J Exp Bot 60:3989–4002. doi:10.1093/jxb/erp265

    Article  CAS  PubMed  Google Scholar 

  • Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68. doi:10.1023/a:1010329902165

    Article  CAS  Google Scholar 

  • Foussadier R (2003) Les systèmes racinaires des arbres de la ripisylve : effets des contraintes physiquues et exemples. In: IDF (ed) Les forêts riveraines des cours d’eau, écologie, fonctions et gestion. Paris, pp 124–133

  • George E, Seith B, Schaeffer C, Marschner H (1997) Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil. Tree Physiol 17:39–45

    Article  PubMed  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi:10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann Bot 94:1–8. doi:10.1093/aob/mch111

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalliokoski T, Nygren P, Sievanen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42:189–210

    Article  Google Scholar 

  • Kalliokoski T, Sievanen R, Nygren P (2010) Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species. Trees-Struct Funct 24:219–236. doi:10.1007/s00468-009-0393-1

    Article  Google Scholar 

  • Köstler J-N, Brueckner E, Bibelriether H (1968) Die wurzeln der waldbäume. Untersuchung zur morphologie der waldbäume in mitteleuropa. Paul Parey, Hamburg

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Moreno G, Obrador JJ, Cubera E, Dupraz C (2005) Fine root distribution in dehesas of central-western Spain. Plant Soil 277:153–162

    Article  CAS  Google Scholar 

  • Mou P, Jones R, Tan Z, Bao Z, Chen H (2013) Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant Soil 364:373–384. doi:10.1007/s11104-012-1336-y

    Article  CAS  Google Scholar 

  • Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University, New Jersey

    Google Scholar 

  • Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006a) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Struct Funct 20:701–712. doi:10.1007/s00468-006-0085-z

    Article  Google Scholar 

  • Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006b) Anchorage of coniferous trees in relation to species, soil type, and rooting depth Canadian. J For Res-Rev Can Rech For 36:1871–1883. doi:10.1139/x06-072

    Article  Google Scholar 

  • Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178:371–381. doi:10.1111/j.1469-8137.2007.02370.x

    Article  PubMed  Google Scholar 

  • Richardson AD, Zu Dohna H (2003) Predicting root biomass from branching patterns of douglas-fir root systems. Oikos 100:96–104. doi:10.1034/j.1600-0706.2003.12081.x

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328. doi:10.2307/3100092

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form: the pipe model theory. II further evidence for the theory and its application in forest ecology Japanese. J Ecol 14:133–139

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form: the pipe model theory. I basic analyses Japanese. J Ecol 14:97–105

    Google Scholar 

  • Smit AL, Bengough AG (2000) Root characteristics : why and what to measure. In: Smit AL, Bengough AG (eds) Root methods : a hand book, vol 1. Springer, pp 1–20

  • Smit AL, Bengough AG, Engels C, Noordwijk M, Pellerin S, Geijn SC (2000) Root methods. A handbook. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Soar CJ, Loveys BR (2007) The effect of changing patterns in soil-moisture availability on grapevine root distribution, and viticultural implications for converting full-cover irrigation into a point-source irrigation system. Aust J Grape Wine Res 13:2–13

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2007) Root tapering between branching points should be included in fractal root system analysis. Ecol Model 207:363–366. doi:10.1016/j.ecolmodel.2007.05.007

    Article  Google Scholar 

  • Sokalska DI, Haman DZ, Szewczuk A, Sobota J, Deren D (2009) Spatial root distribution of mature apple trees under drip irrigation system. Agric Water Manag 96:917–924. doi:10.1016/j.agwat.2008.12.003

    Article  Google Scholar 

  • Stokes A, Ball J, Fitter AH, Brain P, Coutts MP (1996) An experimental investigation of the resistance of model root systems to uprooting. Ann Bot 78:415–421. doi:10.1006/anbo.1996.0137

    Article  Google Scholar 

  • Sun HL, Li SC, Xiong WL, Yang ZR, Cui BS, Tao Y (2008) Influence of slope on root system anchorage of Pinus yunnanensis. Ecol Eng 32:60–67. doi:10.1016/j.ecoleng.2007.09.002

    Article  Google Scholar 

  • Sutton RF, Tinus RW (1983) Root and root system terminology vol 24. Forest science monograph. Society of American Foresters, Bethesda

    Google Scholar 

  • Tamasi E, Stokes A, Lasserre B, Danjon F, Berthier S, Fourcaud T, Chiatante D (2005) Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings Trees-Struct Funct 19:374–384 doi:10.1007/s00468-004-0396-x

  • Tomlinson KW et al (2012) Biomass partitioning and root morphology of savanna trees across a water gradient. J Ecol 100:1113–1121. doi:10.1111/j.1365-2745.2012.01975.x

    Article  Google Scholar 

  • Valdes-Rodriguez OA, Sanchez-Sanchez O, Perez-Vazquez A, Caplan JS, Danjon F (2013) Jatropha curcas L. Root structure and growth in diverse soils. Sci World J. doi:10.1155/2013/827295

    Google Scholar 

  • Van Noordwijk M, Spek LY, Dewilligen P (1994) Proximal root diameter as predictor of total root size for fractal branching models. 1. Theory Plant Soil 164:107–117

  • Vercambre G, Pages L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251:1–11

    Article  CAS  Google Scholar 

  • Wagner B, Gärtner H, Santini S, Ingensand H (2011) Cross-sectional interpolation of annual rings within a 3D root model. Dendrochronologia 29:201–210

    Article  Google Scholar 

  • Wahid PA (2000) A system of classification of woody perennials based on their root activity patterns. Agrofor Syst 49:123–130

    Article  Google Scholar 

  • Wilson BF (1975) Distribution of secondary thickening in tree root systems. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, London, pp 197–219

    Google Scholar 

  • Zanetti C, Vennetier M, Mériaux P, Royet P, Dufour S, Provansal M (2008) L’enracinement des arbres dans les digues en remblai : étude des systèmes racinaires et impacts sur la sécurité des ouvrages Ingénieries - E A T:49–67

  • Zanetti C, Vennetier M, Mériaux P, Royet P, Provansal M, Blanc G (2011) Managing woody vegetation on earth dikes: risks assessment and maintenance solutions Procedia Environmental Sciences 9:196–200

  • Zanetti C, Vennetier M, Mériaux P, Provensal M (2014) Plasticity of tree root system structure in contrasting soil materials and environmental conditions Plant Soil. doi:10.1007/s11104-014-2253-z

  • Zhang Y, Zhou Z, Yang Q (2013) Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil 364:93–104. doi:10.1007/s11104-012-1352-y

    Article  CAS  Google Scholar 

  • Zobel RW, Waisel Y (2010) A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst 144:507–512. doi:10.1080/11263501003764483

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Caroline Brunel from IMBE for her help in multivariate analyses, to Frédéric Danjon for his comments and suggestions from early stages of this study, to Peter Z. Fulé from NAU, USA, for his help in revising the manuscript and language editing, and to many colleagues, technicians and students who contributed in data collection during 12 years of difficult field campaigns and in lab work, and particularly to Willy Martin, Roland Estève, Christian Ripert, Olivier Chandioux, Gaylord Doirat, Pierre-Jean Moundy, David Fiorese, Sophie Ferrat, Sebastien Tourrette and Geoffrey Blanc. This study was funded by Irstea, Provence-Alpes-Côte d’Azur region (PHD grant), the French National Research Agency (ANR - ERINOH project), by dike managers (EDF, CNR, AD Isère-Drac-Romanche, DDT Nièvre, SMAVD, Chambery Métropole, Conseil Général de l’Isère) who hired the technical staff and material to cut trees, extract root systems and remediate damages to studied sites and the Labex OT-Med (n° ANR-11-LABX-0061) through a PHD grant. This work is a contribution to the Labex OT-Med funded by the French Government «Investissements d’Avenir» through the A*MIDEX project (n° ANR-11-IDEX-0001-02) and to ECCOREV research Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Vennetier.

Additional information

Responsible Editor: Alexia Stokes.

Annex

Annex

Table 7 Comparison with Nemenyi test for root tapering and branching rates and segment taper, according to simultaneously root types (T taproots, S shorts roots, R running roots), root size (B big, I intermediate, L little) and Material (c coarse, f fine). Groups sharing the same letter for a given variable did not differ statistically. For segment taper, differences were sometimes more linked to the median than to the mean, due to a very asymmetrical distribution and outliers. Lines highlighted in grey have too low numbers and were not included in the statistical analyses. Fig. 7 crosses tapering and branching rates for all groups of this table
Table 8 Comparison of the mean values of P and all variants of ØLoss and Ma/Br for the Material types (c coarse, f fine), root size (B big, I intermediate, L little) and root types (T taproots, S shorts roots, R running roots). Groups sharing the same letter for each test did not differ significantly according to the Nemenyi test
Table 9 Comparison of the mean values of P and all variants of ØLoss and Ma/Br for the Material types (c coarse, f fine), root size (B big, I intermediate, L little), root types (T taproots, S shorts roots, R running roots) between groups of roots sorted by type and material (Type-Mat) or by Size and material (Size-Mat). Groups sharing the same letter for each test did not differ significantly according to the Nemenyi test
Table 10 Comparison of the mean values of P and all variants of ØLoss and Ma/Br for the Material types (c coarse, f fine), root size (B big, I intermediate, L little), root types (T taproots, S shorts roots, R running roots) between groups of roots sorted by type and size (Type-Size) and sorted by type, size and material (Type-Size-Mat). Groups sharing the same letter for each test did not differ significantly according to the Nemenyi test. Some groups with very low numbers were not integrated in the analyses and their values are not displayed as they may not be representative. The two columns of letters of Type-Size-Mat are coming from a single Nemenyi test for each variable and must be considered together to compare concerned mean values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vennetier, M., Zanetti, C., Meriaux, P. et al. Tree root architecture: new insights from a comprehensive study on dikes. Plant Soil 387, 81–101 (2015). https://doi.org/10.1007/s11104-014-2272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2272-9

Keywords

Navigation