Skip to main content
Log in

Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.

Key message

In C. sativa, NATs potentially participated in genetic information processes, growth and development, stress resistance, and the biosynthesis of compounds. Nat-siRNAs were potentially involved in the biosynthesis of CBDs and cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The RNA-Seq raw data of leaves, roots, and stems have been deposited into the SRA database with the accession numbers SRR17817906, SRR17817907, and SRR17817908, respectively.

References

  • Adal AM, Doshi K, Holbrook L, Mahmoud SS (2021) Comparative RNA-Seq analysis reveals genes associated with masculinization in female Cannabis sativa. Planta 253(1):17

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130–131

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrell BG, Air GM, Hutchison CA 3rd (1976) Overlapping genes in bacteriophage phiX174. Nature 264(5581):34–41

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Yuan C, Zhang J, Zhang Z, Bai L, Meng Y, Chen LL, Chen M (2012) PlantNATsDB: a comprehensive database of plant natural antisense transcripts. Nucleic Acids Res 40(Database issue):D1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Marsico M, Paytuvi Gallart A, Sanseverino W, Aiese Cigliano R (2022) GreeNC 2.0: a comprehensive database of plant long non-coding RNAs. Nucleic Acids Res 50(D1):D1442–D1447

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang B, Xie S, Xu X, Zhang J, Pei L, Yu Y, Yang W, Zhang Y (2020) A high-quality reference genome of wild Cannabis sativa. Hortic Res 7(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassa CJ, Weiblen GD, Wenger JP, Dabney C, Poplawski SG, Timothy Motley S, Michael TP, Schwartz CJ (2021) A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol 230(4):1665–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Kuang Z, Zhao Y, Deng Y-k, He H, Wan M, Tao Y, Wang D, Wei J, Li L, Yang X (2021) PmiREN2.0: from data annotation to functional exploration of plant microRNAs. Nucleic Acids Res 50:D1475 D1482

    Article  PubMed Central  Google Scholar 

  • Jiang M, Chen H, Liu J, Du Q, Liu C (2021) Genome-wide identification and functional characterization of natural antisense transcripts in Salvia miltiorrhiza. Sci Rep 11 (1)

  • Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami E, Watanabe T, Fujii K, Goto H, Watanabe S, Noda T, Kawaoka Y (2011) Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods 173(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–349 (Web Server issue)

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7(12):1216–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laverty KU, Stout JM, Sullivan MJ, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes TR, Page JE, van Bakel H (2019) A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 29(1):146–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Yue X-y, Miao Y, Yu Y, Dong H, Huang L, Cao J (2018) The distinct functions of two classical arabinogalactan proteins BcMF8 and BcMF18 during pollen wall development in Brassica campestris. Plant J 94:60–76

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang C, Jiang M, Ni Y, Xu Y, Wu W, Huang L, Newmaster SG, Kole C, Wu B (2023) Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. Planta 257 (4)

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W, Lu Y (2021) A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot 72(7):2790–2806

    Article  CAS  PubMed  Google Scholar 

  • Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K (2003a) 2003 Osato Et volume al. 5, issue 1, Article R5 Open Access Research antisense transcripts with rice full-length cDNAs

  • Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y (2003b) Antisense transcripts with rice full-length cDNAs. Genome Biol 5(1):R5

    Article  PubMed  PubMed Central  Google Scholar 

  • Perțea M, Kim D, Pertea G, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci U S A 99(13):8796–8801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against Geminiviruses. J Virol 88(5):2611–2622

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  • Rosikiewicz W, Makałowska I (2016) Biological functions of natural antisense transcripts. Acta Biochim Pol 63 4:665–673

    Google Scholar 

  • Shao J, Chen H, Yang D, Jiang M, Zhang H, Wu B, Li J, Yuan L, Liu C (2017) Genome-wide identification and characterization of natural antisense transcripts by strand-specific RNA sequencing in Ganoderma Lucidum. Sci Rep 7(1):5711

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and Ultrafast Toolkit for FASTA/Q file manipulation. PLoS ONE 11

  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res

  • Sun A, Yu B, Zhang Q, Peng Y, Yang J, Sun Y, Qin P, Jia T, Smeekens S, Teng S (2020) MYC2-Activated TRICHOME BIREFRINGENCE-LIKE37 acetylates cell walls and enhances Herbivore Resistance. Plant Physiol 184 2:1083–1096

    Article  Google Scholar 

  • Szymanski M, Karlowski WM (2016) Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data. Acta Biochim Pol 63(4):841–844

    CAS  PubMed  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24(22):2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Tercero B, Terasaki K, Nakagawa K, Narayanan K, Makino S (2019) A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. J Virol Methods 272:113701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thody J, Folkes L, Moulton V (2020) NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. Nucleic Acids Res 48(12):6481–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa J, Itoh T, Selzer G, Som T (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci U S A 78(3):1421–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12(10):R102

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas-Asencio JA, Perry KL (2019) A Small RNA-Mediated Regulatory Network in Arabidopsis thaliana demonstrates Connectivity between phasiRNA Regulatory modules and extensive co-regulation of transcription by miRNAs and phasiRNAs. Front Plant Sci 10:1710

    Article  PubMed  Google Scholar 

  • Wang GQ, Wang Y, Xiong Y, Chen XC, Ma ML, Cai R, Gao Y, Sun YM, Yang GS, Pang WJ (2016) Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6:21865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S (2021) Genome-wide analysis of alternative splicing and non-coding RNAs reveal complicated transcriptional regulation in Cannabis sativa L. Int J Mol Sci 22:21

    Article  Google Scholar 

  • Xia R, Meyers BC, Liu Z, Beers EP, Ye S (2013) MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. Plant Cell 25(5):1555–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F, Lan H, Cao M, Rong T, Lisch D, Lu Y (2017) Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 45(9):5126–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Meng Y, Zuo Z, Xue J, Wang H (2016) NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes. Sci Rep 6:21666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Wang J, Harrison AP, Meng X, Chen D, Chen M (2015) Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA research: an international journal for rapid publication of reports on genes and genomes (22– 3)

  • Zhang Y, Liu XS, Liu QR, Wei L (2006) Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 34(12):3465–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806 D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y (2018) Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9(1):5056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li MC, Konate MM, Chen L, Das B, Karlovich C, Williams PM, Evrard YA, Doroshow JH, McShane LM (2021) TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J Transl Med 19(1):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Chinese Academy of Medical Sciences Innovation Funds for Medical Sciences (CIFMS) [2021-I2M-1-022], the National Science Foundation of China [81872966], and the National Science &Technology Fundamental Resources Investigation Program of China [2018FY100705]. The funders were not involved in the study design, data collection, analysis, decision to be published, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wu or Chang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jiang, M., Liu, J. et al. Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L. Plant Mol Biol 114, 47 (2024). https://doi.org/10.1007/s11103-024-01434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-024-01434-z

Keywords

Navigation