Skip to main content
Log in

How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance. However, the gravity resistance phenomenon in plants is poorly understood due to the prevalence of 1 g gravitational force on Earth: not only it is difficult to culture plants at gravity > 1 g(hypergravity) for a long period of time but it is also impossible to create a < 1 genvironment (μg, micro g) on Earth without specialized facilities. Despite these technical challenges, it is important to understand how plants grow in different gravity conditions in order to understand land plant adaptation to the 1 g environment or for outer space exploration. To address this, we have developed a centrifugal device for a prolonged duration of plant culture in hypergravity conditions, and a project to grow plants under the μg environment in the International Space Station is also underway. Our plant material of choice is Physcomitrium (Physcomitrella) patens, one of the pioneer plants on land and a model bryophyte often used in plant biology. In this review, we summarize our latest findings regarding P. patens growth response to hypergravity, with reference to our on-going “Space moss” project. In our ground-based hypergravity experiments, we analyzed the morphological and physiological changes and found unexpected increments of chloroplast size and photosynthesis rate, which might underlie the enhancement of growth and increase in the number of gametophores and rhizoids. We further discussed our approaches at the cellular level and compare the gravity resistance in mosses and that in angiosperms. Finally, we highlight the advantages and perspectives from the space experiments and conclude that research with bryophytes is beneficial to comprehensively and precisely understand gravitational responses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen J, Bisbee PA, Darnell RL, Kuang A, Levine LH, Musgrave ME, van Loon JJWA (2009) Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): consequences for secondary metabolism. Am J Bot 96:652–660

    PubMed  Google Scholar 

  • Böhmer M, Schleiff E (2019) Microgravity research in plants. EMBO Rep 20:e48541

    PubMed  PubMed Central  Google Scholar 

  • Bramley-Alves J, King DH, Robinson SA, Miller RE (2014) Dominating the Antarctic environment: bryophytes in a time of change. In: Hanson TD, Rice KS (eds) Photosynthesis in bryophytes and early land plants. Springer, Netherlands, pp 309–324

    Google Scholar 

  • Braun M, Sievers A (1993) Centrifugation causes adaptation of microfilaments: studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174:50–61

    CAS  PubMed  Google Scholar 

  • Campos ML, Prado GS, dos Santos VO, Nascimento LC, Dohms SM, da Cunha NB, Ramada MHS, Grossi-de-Sa MF, Dias SC (2020) Mosses: versatile plants for biotechnological applications. Biotechnol Adv 41:107533

    CAS  PubMed  Google Scholar 

  • Carriquí M, Cabrera HM, Conesa M, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Ribas-Carbo M, Tomás M, Flexas J (2015) Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ 38:448–460

    PubMed  Google Scholar 

  • Carriquí M, Flexas J, Mark K, Roig-Oliver M, Niinemets Ü, Tosens T, Brodribb TJ, Waite M, Gill W, Ribas-Carbó M, Coopman R, Sack L, Perera-Castro AV (2019) Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol 222:1256–1270

    PubMed  Google Scholar 

  • Chebli Y, Pujol L, Shojaeifard A, Brouwer I, van Loon JJ, Geitmann A (2013) Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS ONE 8:e58246

    PubMed  PubMed Central  Google Scholar 

  • Coe KK, Sparks JP, Belnap J (2014) Physiological ecology of dryland biocrust mosses. In: Hanson TD, Rice KS (eds) Photosynthesis in bryophytes and early land plants. Springer, Netherlands, pp 291–308

    Google Scholar 

  • Cove DJ, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105

    Google Scholar 

  • Cove DJ, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2020) Mosses in biotechnology. Curr Opin Biotechnol 61:21–27

    CAS  PubMed  Google Scholar 

  • Espiñeira JM, Novo Uzal E, Gómez Ros LV, Carrión JS, Merino F, Ros Barceló A, Pomar F (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68

    PubMed  Google Scholar 

  • Fan ZX, Sterck F, Zhang SB, Fu PL, Hao GY (2017) Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species. Front Plant Sci 8:1619

    PubMed  PubMed Central  Google Scholar 

  • Fitzelle KJ, Kiss JZ (2001) Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity. J Exp Bot 52:265–275

    CAS  PubMed  Google Scholar 

  • Friedrich UL, Joop O, Putz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI—a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotechnol 47:225–238

    CAS  PubMed  Google Scholar 

  • Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J (2019) Photosynthesis optimized across land plant phylogeny. Trends Plant Sci 24:947–958

    CAS  PubMed  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade—a whole plant perspective. Aust J Plant Physiol 15:63–92

    Google Scholar 

  • Hanson DT, Renzaglia K, Villarreal JC (2014) Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson TD, Rice KS (eds) Photosynthesis in bryophytes and early land plants. Springer, Netherlands, pp 95–111

    Google Scholar 

  • Hepler PK (2016) The cytoskeleton and its regulation by calcium and protons. Plant Physiol 170:3–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283

    Google Scholar 

  • Hiwatashi Y, Sato Y, Doonan JH (2014) Kinesins have a dual function in organizing microtubules during both tip growth and cytokinesis in Physcomitrella patens. Plant Cell 26:1256–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horst NA, Reski R (2017) Microscopy of Physcomitrella patens sperm cells. Plant Methods 13:33

    PubMed  PubMed Central  Google Scholar 

  • Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244

    CAS  PubMed  Google Scholar 

  • Hoson T, Wakabayashi K (2015) Role of the plant cell wall in gravity resistance. Phytochemistry 112:84–90

    CAS  PubMed  Google Scholar 

  • Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203:S187–S197

    CAS  PubMed  Google Scholar 

  • Hoson T, Soga K, Wakabayashi K, Hashimoto T, Karahara I, Yano S, Tanigaki F, Shimazu T, Kasahara H, Masuda D, Kamisaka S (2014) Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol 16(S1):91–96. https://doi.org/10.1111/plb.12099

    Article  PubMed  Google Scholar 

  • Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J (2019) Mosses in low earth orbit: implications for the limits of life and the habitability of Mars. Astrobiology 19:221–232

    CAS  PubMed  Google Scholar 

  • Inui K, Soga K, Wakabayashi K, Hoson T (2019) Centrifugal displacement of nuclei in epidermal cells of azuki bean epicotyls. Biol Sci Sp 33:1–6

    Google Scholar 

  • Johnson CM, Subramanian A, Pattathil S, Correll MJ, Kiss JZ (2017) Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot 104:1219–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karahara I, Tamaoki D, Nishiuchi T, Schreiber L, Kamisaka S (2009) Effects of altered gravity conditions on lignin and secondary wall formation in herbaceous dicots and woody plants. Biol Sci Space 23:177–182

    Google Scholar 

  • Karahara I, Suto T, Yamaguchi T, Yashiro U, Tamaoki D, Okamoto E, Yano S, Tanigaki F, Shimazu T, Kasahara H, Kasahara H, Yamada M, Hoson T, Soga K, Kamisaka S (2020) Vegetative and reproductive growth of Arabidopsis under microgravity conditions in space. J Plant Res 133:571–585

    CAS  PubMed  Google Scholar 

  • Kern VD, Smith JD, Schwuchow JM, Sack FD (2001) Amyloplasts that sediment in protonemata of the moss Ceratodon purpureus are nonrandomly distributed in microgravity. Plant Physiol 125:2085–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221:149–157

    CAS  PubMed  Google Scholar 

  • Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon JJWA (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577

    PubMed  PubMed Central  Google Scholar 

  • Kleist TJ, Cartwright HN, Perera AM, Christianson ML, Lemaux PG, Luan S (2017) Genetically encoded calcium indicators for fluorescence imaging in the moss Physcomitrella: GCaMP3 provides a bright new look. Plant Biotechnol J 15:1235–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaya Y, Kawai M, Takahashi H, Tani A, Goto E, Saito T, Shibuya T, Kiyota M (2006) Heat and gas exchanges between plants and atmosphere under microgravity conditions. Ann N Y Acad Sci 1077:244–255. https://doi.org/10.1196/annals.1362.027

    Article  CAS  PubMed  Google Scholar 

  • Kordyum EL, Nedukha EM, Stynik KM, Mashinsky AL (1981) Optical and electronmicroscopic studies of the Funaria hygrometrica protonema after cultivation for 96 days in space. Adv Space Res 1:159–162

    CAS  PubMed  Google Scholar 

  • Kosetsu K, de Keijzer J, Janson ME, Goshima G (2013) MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. Plant Cell 25:4479–4492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manzano AI, Herranz R, van Loon JJWA, Medina FJ (2012) A hypergravity environment induced by centrifugation alters plant cell proliferation and growth in an opposite way to microgravity. Microgravity Sci Technol 24:373–381

    Google Scholar 

  • Manzano AI, Herranz R, Manzano A, van Loon JJWA, Medina FJ (2016) Early effects of altered gravity environments on plant cell growth and cell roliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system. Front Astron Space Sci 3:2

    Google Scholar 

  • Masson PH (2001) Gravitropism in Arabidopsis thaliana. Encyclopedia of genetics. Academic Press, Elsevier, pp 890–894

    Google Scholar 

  • Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T (2010) Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol 152:918–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori A, Kamachi H, Karahara I, Kume A, Hanba YT, Takemura K, Fujita T (2017) Comparisons of the effects of vibration of two centrifugal systems on the growth and morphological parameters of the moss Physcomitrella patens. Biol Sci Space 31:9–13

    Google Scholar 

  • Monje O, Stutte G, Chapman D (2005) Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Planta 222:336–345. https://doi.org/10.1007/s00425-005-1529-1

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Soga K, Kotake T, Kato T, Hashimoto T, Wakabayashi K, Hoson T (2016) Roles of MAP65-1 and BPP1 in gravity resistance of Arabidopsis hypocotyls. Biol Sci Space 30:1–7

    Google Scholar 

  • Musgrave ME, Kuang A, Allen J, van Loon JJWA (2009) Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth. Planta 230:863–870

    CAS  PubMed  Google Scholar 

  • Nakabayashi I, Karahara I, Tamaoki D, Masuda K, Wakasugi T, Yamada K, Soga K, Hoson T, Kamisaka S (2006) Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Ann Bot (Lond) 97:1083–1090

    Google Scholar 

  • Nakamura T, Sassa N, Kuroiwa E, Negishi Y, Hashimoto A, Yamashita M, Yamada M (1999) Growth of Prunus tree stems under simulated microgravity conditions. Adv Space Res 23:2017–2020

    CAS  PubMed  Google Scholar 

  • Nakamura M, Nishimura T, Terao-Morita M (2019) Gravity sensing and signal conversion in plant gravitropism. J Exp Bot 70:3495–3506

    CAS  PubMed  Google Scholar 

  • Niklas KJ (2016) Plant evolution: an introduction to the history of life. University of Chicago Press, Chicago

    Google Scholar 

  • Norris JH, Li X, Huang S, Van de Meene AML, Tran ML, Killeavy E, Chaves AM, Mallon B, Mercure D, Tan H-T, Burton RA, Doblin MS, Kim SH, Robertsa AW (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ögren E, Evans J (1993) Photosynthetic light-response curves: I. The influence of CO2 partial pressure and leaf inversion. Planta 189:182–190

    Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Google Scholar 

  • Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L (2015) How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol 208:736–749

    PubMed  PubMed Central  Google Scholar 

  • Rabbow E, Rettberg P, Parpart A, Panitz C, Schulte W, Molter F, Jaramillo E, Demets R, Weiß P, Willnecker R (2017) EXPOSE-R2: The Astrobiological ESA mission on board of the international space station. Front Microbiol 8:1533

    PubMed  PubMed Central  Google Scholar 

  • Rensing SA, Goffinet B, Meyberg R, Wu SZ, Bezanilla M (2020) The Moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32:1361–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Wada M, Kadota A (2003) Accumulation response of chloroplasts induced by mechanical stimulation in bryophyte cells. Planta 216:772–777

    CAS  PubMed  Google Scholar 

  • Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the moss Ceratodon. Protoplasma 159:60–69

    CAS  PubMed  Google Scholar 

  • Soga K (2013) Resistance of plants to gravitational force. J Plant Res 126:589–596

    CAS  PubMed  Google Scholar 

  • Soga K, Harada K, Wakabayashi K, Hoson T, Kamisaka S (1999) Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J Plant Res 112:273–278

    CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215:1040–1046

    CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2004) Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218:1054–1061

    CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2005) Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Funct Plant Biol 32:175–179

    PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2006) Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls. Planta 224:1485–1494

    CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2007) Effects of hypergravity on expression of XTH genes in azuki bean epicotyls. Physiol Plant 131:332–340

    CAS  PubMed  Google Scholar 

  • Soga K, Yano S, Matsumoto S, Hoson T (2015) Hypergravity experiments to evaluate gravity resistance mechanisms in plants. In: Blancaflor E (ed) Plant gravitropism. Methods in molecular biology, vol 1309. Humana Press, New York

    Google Scholar 

  • Soga K, Yamazaki C, Kamada M, Tanigawa N, Kasahara H, Yano S, Kojo KH, Kutsuna N, Kato T, Hashimoto T, Kotake T, Wakabayashi K, Hoson T (2018) Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiol Plant 162:135–144

    CAS  PubMed  Google Scholar 

  • Takahashi H (1997) Gravimorphogenesis: gravity-regulated formation of the peg in cucumber seedlings. Planta 203:S164–S169

    CAS  PubMed  Google Scholar 

  • Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017a) Hypergravity environment increases chloroplast sizes, photosynthesis and plant growth of the moss Physcomitrella patens. J Plant Res 130:181–192

    CAS  PubMed  Google Scholar 

  • Takemura K, Watanabe R, Kameishi R, Sakaguchi N, Kamachi H, Kume A, Karahara I, Hanba YT, Fujita T (2017b) Hypergravity of 10g changes plant growth, anatomy, chloroplast size, and photosynthesis in the moss Physcomitrella patens. Microgravity Sci Technol 29:467–473

    Google Scholar 

  • Tamaoki D, Karahara I, Schreiber L, Wakasugi T, Yamada K, Kamisaka S (2006) Effects of hypergravity conditions on elongation growth and lignin formation in the inflorescence stem of Arabidopsis thaliana. J Plant Res 119:79–84

    CAS  PubMed  Google Scholar 

  • Tamaoki D, Karahara I, Nishiuchi T, De Oliveira S, Schreiber L, Wakasugi T, Yamada K, Yamaguchi K, Kamisaka S (2009) Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones. Adv Space Res 44:245–253

    CAS  Google Scholar 

  • Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S (2014) Effects of hypergravity stimulus on the global gene expression during reproductive growth in Arabidopsis. Plant Biol 16:179–186

    PubMed  Google Scholar 

  • Tanabe H, Soga K, Wakabayashi K, Hoson T (2018) Dynamics of actin filaments in epidermal cells of azuki bean epicotyls under hypergravity conditions. Biol Sci Sp 32:11–16

    Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrera M, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    CAS  PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv Space Res 39:1190–1197

    CAS  Google Scholar 

  • Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013a) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol 163:543–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S, Tasaka M, Morita MT (2013b) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J 76:648–660

    CAS  PubMed  Google Scholar 

  • Vandenbrinka JP, Kiss JZ (2019) Plant responses to gravity. Semin Cell Dev Biol 92:122–125

    Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Nakano S, Soga K, Hoson T (2009) Cell wall-bound peroxidase activity and lignin formation in azuki bean epicotyls grown under hypergravity conditions. J Plant Physiol 166:947–954

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Soga K, Hoson T, Kotake T, Yamazaki T, Ishioka N, Shimazu T, Kamada M (2020) Microgravity affects the level of matrix polysaccharide 1,3:1,4-β-glucans in cell walls of rice shoots by increasing the expression level of a gene involved in their breakdown. Astrobiology 20:820–829

    CAS  PubMed  Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343:1505–1508

    CAS  PubMed  Google Scholar 

  • Yano S, Kasahara H, Masuda D, Tanigaki F, Shimazu T, Suzuki H, Karahara I, Soga K, Hoson T, Tayama I, Tsuchiya Y, Kamisaka S (2013) Improvements in and actual performance of the plant experiment unit onboard Kibo, the Japanese experiment module on the international space station. Adv Space Res 51:780–788

    Google Scholar 

  • Yashiro U, Karahara I, Yano S, Tamaoki D, Tanigaki F, Shimazu T, Masuda D, Kasahara H, Kamisaka S (2020) Life cycle of Arabidopsis in the international space station—growth direction of the inflorescence stems in the presence of light under microgravity. BioRxiv. https://doi.org/10.1101/2020.09.30.320051

    Article  Google Scholar 

  • Yokoyama R, Uwagaki Y, Sasaki H, Harada T, Hiwatashi Y, Hasebe M, Nishitani K (2010) Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens. Plant J 64:645–656

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ooi-Kock Teh (Hokkaido University) for carefully reading this manuscript. We are also grateful to Kaoru L. Tsuji (Miyagi University) and Yuki Yamashita (Hokkaido University) for providing the images shown in Figs. 4c and 5f, respectively. Some of the research introduced here has been carried out as part of the “Environmental response and utilization of mosses in space -Space Moss-” project supported by the “Kibo” utilization feasibility study of JAXA (Japan Aerospace Exploration Agency). The research was also supported by Miyagi University designated research fund (special promotion research). From the inception of the “Space Moss” working group of the Space Environment Utilization Science Committee, great support has been received from many parties, including JAXA, NASA (National Aeronautics and Space Administration), and students belonging to the authors’ laboratories. The ISS crews made great contributions by performing the experiments in space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomichi Fujita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kume, A., Kamachi, H., Onoda, Y. et al. How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. Plant Mol Biol 107, 279–291 (2021). https://doi.org/10.1007/s11103-021-01146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01146-8

Keywords

Navigation