Skip to main content
Log in

Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Powdery mildew species Oidium neolycopersici (On) can cause serious yield losses in tomato production worldwide. Besides on tomato, On is able to grow and reproduce on Arabidopsis. In this study we screened a collection of activation-tagged Arabidopsis mutants and identified one mutant, 3221, which displayed resistance to On, and in addition showed a reduced stature and serrated leaves. Additional disease tests demonstrated that the 3221 mutant exhibited resistance to downy mildew (Hyaloperonospora arabidopsidis) and green peach aphid (Myzus persicae), but retained susceptibility to bacterial pathogen Pseudomonas syringae pv tomato DC3000. The resistance trait and morphological alteration were mutually linked in 3221. Identification of the activation tag insertion site and microarray analysis revealed that ATHB13, a homeodomain-leucine zipper (HD-Zip) transcription factor, was constitutively overexpressed in 3221. Silencing of ATHB13 in 3221 resulted in the loss of both the morphological alteration and resistance, whereas overexpression of the cloned ATHB13 in Col-0 and Col-eds1-2 backgrounds resulted in morphological alteration and resistance. Microarray analysis further revealed that overexpression of ATHB13 influenced the expression of a large number of genes. Previously, it was reported that ATHB13-overexpressing lines conferred tolerance to abiotic stress. Together with our results, it appears that ATHB13 is involved in the crosstalk between abiotic and biotic stress resistance pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboul-Soud MAM, Chen X, Kang JG, Yun BW, Raja MU, Malik SI, Loake GJ (2009) Activation tagging of ADR2 conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytol 183:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356

    Article  CAS  PubMed  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Huang C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, van der Hulst R, Bonnema G, Marcel Tl, Meijer-Dekens F, Niks R, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact 18:354–362

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel N, Reinstädler A, Lotti C, Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    Article  CAS  PubMed  Google Scholar 

  • Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS ONE 8:e58987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol 61:451–467

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Bell E, Sadka A, Mullet JE (1995) Arabidopsis thaliana AtVSP is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid-phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol Biol 27:933–942

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Mitchell-Olds T, Stotz HU (2002) Local and differential control of vegetative storage protein expression in response to herbivore damage in Arabidopsis thaliana. Physiol Plantarum 114:85–91

    Article  CAS  Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249

    Article  PubMed  Google Scholar 

  • Cabello JV, Chan RL (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol J 10:815–825

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Arce AL, Chan RL (2012) The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J 69:141–153

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Vosman B, Visser RGF, van der Vlugt RAA, Broekgaarden C (2012) High throughput phenotyping for aphid resistance in large plant collections. Plant Methods 8:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Zhang Z, Visser RGF, Broekgaarden C, Vosman B (2013) Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana. PLoS ONE 8:e70914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi C, Park YH, Kwon SI, Yun C, Ahn I, Park SR, Hwang DJ (2014) Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines. Plant Biotechnol Rep. doi:10.1007/s11816-013-0308-x

    Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis book e0156

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gachomo EW, Jimenez-Lopez JC, Smith SR, Cooksey AB, Oghoghomeh OM, Johnson N, Baba-Moussa L, Kotchoni SO (2013) The cell morphogenesis ANGUSTIFOLIA (AN) gene, a plant homolog of CtBP/BARS, is involved in abiotic and biotic stress response in higher plants. BMC Plant Biol 13:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge X, Li G, Wang S, Zhu H, Zhu T, Wang X, Xia Y (2007) AtNUDT7, a negative regulator of basal immunity in Aradidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145:204–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4:301–308

    Article  CAS  PubMed  Google Scholar 

  • Göllner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742

    Article  PubMed  Google Scholar 

  • Goyer A, Hasnain G, Frelin O, Ralat MA, Gregory JF, Hanson AD (2013) A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. Biochem J 454:533–542

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Johannesson H, Engström P (2001) Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZip gene ATHB13. Plant Mol Biol 45:247–262

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Regan S, Engström P (2002) The expression pattern of the homeobox gene ATHB13 reveals a conservation of transcriptional regulatory mechanisms between Arabidopsis and hybrid aspen. Plant Cell Rep 21:81–89

    Article  CAS  Google Scholar 

  • Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    Article  CAS  Google Scholar 

  • Henriksson E, Olsson ASB, Johannesson H, Hanson J, Engström P, Söderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139:509–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hering TF, Nicholson PB (1964) A clearing technique for the examination of fungi in plant tissue. Nature 201:942–943

    Article  Google Scholar 

  • Hu Y, Dong Q, Yu D (2011) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–186:288–297

    PubMed  Google Scholar 

  • Huibers RP, de Jong M, Dekter RW, Van den Ackerveken G (2009) Disease-specific expression of host genes during downy mildew infection of Arabidopsis. Mol Plant Microbe Interact 22:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Huibers RP, Loonen AEHM, Gao D, Van den Ackerveken G, Visser RGF, Bai Y (2013) Powdery mildew resistance in tomato by impairment of SIPMR4 and SIDMR6. PLoS ONE 8:e67467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishihara T, Sekine KT, Hase S, Kanayama Y, Seo S, Ohashi Y, Kusano T, Shibata D, Shah J, Takahashi H (2008) Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biology 10:451–461

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, Penaganti A, Tang Y, Mahalingam R (2010) Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol 10:173

    Article  PubMed Central  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) Gateway™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 trancription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiss L, Takamatsu S, Cunnington JH (2005) Molecular identification of Oidium neolycopersici as the causal agent of the recent tomato powdery mildew epidemics in North America. Plant Dis 89:491–496

    Article  CAS  Google Scholar 

  • Koch E, Slusarenko AJ (1990) Fungal pathogens of Arabidopsis thaliana (L.) Heynh. Bot Helv 100:257–268

    Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Kraszewska E (2008) The plant Nudix hydrolase family. Acta Biochim Pol 55:663–671

    CAS  PubMed  Google Scholar 

  • Laing E, Smith CP (2010) RankProdlt: a web-interactive Rank Products analysis tool. BMC Res Notes 3:221

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K (2005) Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol 139:1545–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Logemann E, Birkenbihl RP, Ulker B, Somssich IE (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayda E, Pablo T, Conejero V, Vera P (1999) A tomato homeobox gene (HD-Zip) is involved in limiting the spread of programmed cell death. Plant J 20:591–600

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C, Heck S, Nonglak P, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palena CM, Gonzalez DH, Chan RL (1999) A monomer–dimer equilibrium modulates the interaction of the sunflower homeodomain-leucine zipper protein Hahb-4 with DNA. Biochem J 341:81–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pallant J (2010) SPSS survival manual: a step by step guide to data analysis using SPSS, 4th edn. Allen & Unwin Book Publishers, Australia

    Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90:1009–1016

    Article  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sessa G, Carabelli M, Ruberti I (1994) Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. Plant Mol Biol 81:412–426

    Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2005) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain containing protein. Plant J 44:245–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 47:75–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tornero P, Dangl JL (2001) A high throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J 28:475–481

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Op Plant Biol 6:57–62

    Article  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf shape determination. Annu Rev Plant Biol 57:477–496

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2007) A new member of the CtBP/BARS family from plants: Angustifolia. In Chinnadurai G (ed) CtBP family proteins (pp 112–118). Springer, New York

  • Utsugi S, Sakamoto W, Murata M, Motoyoshi F (1998) Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue specific expression. Plant Mol Biol 38:565–576

    Article  CAS  PubMed  Google Scholar 

  • Verica JA, Medford JI (1997) Modified MERI5 expression alters cell expansion in transgenic Arabidopsis plants. Plant Sci 125:201–210

    Article  CAS  Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci USA 97:1897–1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–2106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Chistensen SK, Fankhauser C et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Charoenwattana P, Holcombe L, Turner JG (2003) The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. Mol Plant Microbe Interact 16:289–294

    Article  CAS  PubMed  Google Scholar 

  • Yadeta KA, Hanemian M, Smit P, Hiemstra JA, Pereira A, Marco Y, Thomma BPHJ (2011) The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance. Mol Plant Microbe Interact 24:1582–1591

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Technological Top Institute Green Genetics, the Netherlands (TTI-GG:2CC038RP) together with Keygene N.V, Syngenta and Rijk Zwaan Breeding B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Bai.

Additional information

Dongli Gao, Michela Appiano and Robin P. Huibers contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Appiano, M., Huibers, R.P. et al. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance. Plant Mol Biol 86, 641–653 (2014). https://doi.org/10.1007/s11103-014-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0253-2

Keywords

Navigation