Skip to main content
Log in

New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An ∼247-kb genomic region from FF genome of wild rice Oryza brachyantha, possessing the smallest Oryza genome, was compared to the orthologous ∼450-kb region from AA genome, O. sativa L. ssp. japonica. 37 of 38 genes in the orthologous regions are shared between japonica and O. brachyantha. Analyses of nucleotide substitution in coding regions suggest the two genomes diverged ∼10 million years ago. Comparisons of transposable elements (TEs) reveal that the density of DNA TEs in O. brachyantha is comparable to O. sativa; however, the density of RNA TEs is dramatically lower. The genomic fraction of RNA TEs in japonica is two times greater than in O. brachyantha. Differences, particularly in RNA TEs, in this region and in BAC end sequences from five wild and two cultivated Oryza species explain major genome size differences between sativa and brachyantha. Gene expression analyses of three ObDREB1 genes in the sequenced region indicate orthologous genes retain similar expression patterns following cold stress. Our results demonstrate that size and number of RNA TEs play a major role in genomic differentiation and evolution in Oryza. Additionally, distantly related O. brachyantha shares colinearity with O. sativa, offering opportunities to use comparative genomics to explore the genetic diversity of wild species to improve cultivated rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

mya:

Million years ago

References

  • Ammiraju JS, Luo M, Goicoechea JL Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B et al (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    Article  PubMed  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    Article  PubMed  CAS  Google Scholar 

  • Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Du C, Swigonova Z, Messing J (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6:62

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Emrich SJ, Li L, Wen T-J, Yandeau-Nelson MD, Fu Y, Guo L, Chou H-H, Aluru S, Ashlock DA, Schnable PS (2007) Nearly Identical Paralogs: Implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytologist 154:15–28

    Article  CAS  Google Scholar 

  • Ge S, Sang T, Lu B-R, Hong D-Y (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Moose SP (2003) Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. Plant Cell 15:1143–1158

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33:2374–2383

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    Article  PubMed  CAS  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–536

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004a) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004b) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  PubMed  CAS  Google Scholar 

  • Kang X, Ni M (2006) Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell 18:921–934

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park YJ, Jeong OY, Bennetzen JL, Messing J (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Ma J, SanMiguel P, Lai J, Messing J, Bennetzen JL (2005) DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 170:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S-S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    Article  PubMed  CAS  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046–1047

    Article  PubMed  CAS  Google Scholar 

  • McCouch S, Thompson M, Septiningsih E, Moncada P, Li J, McClung A, Tai T, Guimaraes E, Moon H, Ahn S (2001) Wild QTLs for rice improvement. In Rockwood W (ed) Proceedings of the Chandler symposium: rice research and production in the 21st century, vol 15–17. IRRI, Philippines, pp 151–169

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Mullins I, Hilu K (2002) Sequence variation in the gene encoding the 10-kDa prolamin in Oryza (Poaceae). I. Phylogenetic Implications. Theor Appl Genet 105:841–846

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Vaughan DA, Kadowaki K-i (2005) Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor Appl Genet 110:696–705

    Article  PubMed  CAS  Google Scholar 

  • Odland W, Baumgarten A, Phillips R (2006) Ancestral rice blocks define multiple related regions in the maize genome. Crop Sci 46:S41–S48

    Article  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS (2001) Genomic change and gene silencing in polyploids. Trends Genet 17:675–677

    Article  PubMed  CAS  Google Scholar 

  • Podlaha O, Zhang J (2004) Nonneutral evolution of the transcribed pseudogene Makorin1-p1 in mice. Mol Biol Evol 21:2202–2209

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Scherrer B, Isidore E, Klein P, Kim JS, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih E, Prasetiyono J, Lubis E, Tai T, Tjubaryat T, Moeljopawiro S, McCouch S (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih E, Trijatmiko K, Moeljopawiro S, McCouch S (2003b) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The Complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–392

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    Article  PubMed  CAS  Google Scholar 

  • Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35:791–799

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DA (1994) Wild relatives of rice: genetic resources handbook. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J 41:184–194

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52–63

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular response and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Zhirong Bao (University of Washington) and Ling Meng (University of California, Berkeley) for valuable discussions and Gerald R. Lazo from USDA-ARS, Western Regional Research Center for bioinformatics assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Qiang Gu or Peggy G. Lemaux.

Additional information

Data deposition: Sequence data from this article were deposited with GenBank Library under accession number DQ810282.

Shibo Zhang and Yong Qiang Gu contributed equally to the work

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2007_9178_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Gu, Y.Q., Singh, J. et al. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification. Plant Mol Biol 64, 589–600 (2007). https://doi.org/10.1007/s11103-007-9178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9178-3

Keywords

Navigation