Skip to main content
Log in

Posterior hypothalamic involvement on pre-operative MRI predicts hypothalamic obesity in craniopharyngiomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Hypothalamic obesity (HO) is a complication associated with craniopharyngioma (CP). Attempts have been made to perioperatively predict the development of this complication, which can be severe and difficult to treat.

Methods

Patients who underwent first transsphenoidal surgical resection in a single center between February 2005 and March 2019 were screened; those who have had prior surgery or radiation, were aged below 18 years, or did not have follow up body mass index (BMI) after surgery were excluded. Primary end point was BMI within 2 years post-surgery. Hypothalamic involvement (HI) was graded based on preoperative and postoperative imaging with regards to anterior, posterior, left and right involvement. Data on baseline demographics, pre-operative and post-operative MRI, and endocrine function were collected.

Results

45 patients met the inclusion and exclusion criteria. Most patients in our cohort underwent gross total resection (n = 35 patients). 13 patients were from no HI or anterior HI only group and 22 patients were classified as both anterior (ant) and posterior (post) HI group. There was no significant difference between the two groups in the gross total, subtotal or near total resection. Pre-operative BMI and post-operative BMI were significantly higher in patients who had ant and post HI on pre-operative MRI (p < 0.05 and p < 0.01, respectively). Similarly, post-operative BMI at 13–24 months was also significantly higher in the ant and post HI group on post-op MRI (p < 0.01). There was no significant difference between the two groups in terms of baseline adrenal insufficiency, thyroid insufficiency, gonadal insufficiency, IGF-1 levels, hyperprolactinemia, and diabetes insipidus. Diabetes insipidus was more common following surgery among those who had anterior and posterior involvement on pre-operative MRI (p < 0.05).

Conclusions

HO appears to be predetermined by tumor involvement in the posterior hypothalamus observed on pre-operative MRI. Posterior HI on pre-operative MRI was also associated with the development of diabetes insipidus after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ordonez-Rubiano EG, Forbes JA, Morgenstern PF et al (2018) Preserve or sacrifice the stalk? Endocrinological outcomes, extent of resection, and recurrence rates following endoscopic endonasal resection of craniopharyngiomas. J Neurosurg. https://doi.org/10.3171/2018.6.JNS18901

    Article  Google Scholar 

  2. van Iersel L, Brokke KE, Adan RAH, Bulthuis LCM, van den Akker ELT, van Santen HM (2019) Pathophysiology and individualized treatment of hypothalamic obesity following craniopharyngioma and other suprasellar tumors: a systematic review. Endocr Rev 40(1):193–235. https://doi.org/10.1210/er.2018-00017

    Article  Google Scholar 

  3. Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM (1998) The descriptive epidemiology of craniopharyngioma. J Neurosurg 89(4):547–551. https://doi.org/10.3171/jns.1998.89.4.0547

    Article  CAS  Google Scholar 

  4. Pereira AM, Schmid EM, Schutte PJ et al (2005) High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin Endocrinol 62(2):197–204. https://doi.org/10.1111/j.1365-2265.2004.02196.x

    Article  Google Scholar 

  5. Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbuchel AMM, Muller HL (2015) Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro-oncology 17(7):1029–1038. https://doi.org/10.1093/neuonc/nov044

    Article  Google Scholar 

  6. Yang I, Sughrue ME, Rutkowski MJ et al (2010) Craniopharyngioma: a comparison of tumor control with various treatment strategies. Neurosurg Focus 28(4):E5

    Article  Google Scholar 

  7. Tan TSE, Patel L, Gopal-Kothandapani JS et al (2017) The neuroendocrine sequelae of paediatric craniopharyngioma: a 40-year meta-data analysis of 185 cases from three UK centres. Eur J Endocrinol 176(3):359–369. https://doi.org/10.1530/EJE-16-0812

    Article  CAS  Google Scholar 

  8. Wijnen M, van den Heuvel-Eibrink MM, Janssen JAMJL et al (2017) Very long-term sequelae of craniopharyngioma. Eur J Endocrinol 176(6):755–767. https://doi.org/10.1530/EJE-17-0044

    Article  CAS  Google Scholar 

  9. Cohen M, Guger S, Hamilton J (2011) Long term sequelae of pediatric craniopharyngioma—literature review and 20 years of experience. Front Endocrinol 2:81–81. https://doi.org/10.3389/fendo.2011.00081

    Article  Google Scholar 

  10. Park SW, Jung HW, Lee YA et al (2013) Tumor origin and growth pattern at diagnosis and surgical hypothalamic damage predict obesity in pediatric craniopharyngioma. J Neurooncol 113(3):417–424. https://doi.org/10.1007/s11060-013-1128-0

    Article  Google Scholar 

  11. Andereggen L, Hess B, Andres R et al (2018) A ten-year follow-up study of treatment outcome of craniopharyngiomas. Swiss Med Wkly 148:w14521. https://doi.org/10.4414/smw.2018.14521

    Article  CAS  Google Scholar 

  12. Tosta-Hernandez PDC, Siviero-Miachon AA, da Silva NS, Cappellano A, de Pinheiro M, Spinola-Castro AM (2018) Childhood craniopharyngioma: a 22-year challenging follow-up in a single center. Horm Metab Res 50(9):675–682. https://doi.org/10.1055/a-0641-5956

    Article  CAS  Google Scholar 

  13. Karavitaki N, Brufani C, Warner JT et al (2005) Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol 62(4):397–409. https://doi.org/10.1111/j.1365-2265.2005.02231.x

    Article  CAS  Google Scholar 

  14. Lo AC, Howard AF, Nichol A et al (2014) Long-term outcomes and complications in patients with craniopharyngioma: the British Columbia Cancer Agency experience. Int J Radiat Oncol Biol Phys 88(5):1011–1018. https://doi.org/10.1016/j.ijrobp.2014.01.019

    Article  Google Scholar 

  15. Bagnasco M, Tulipano G, Melis MR, Argiolas A, Cocchi D, Muller EE (2003) Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting. Regul Pept 111(1–3):161–167. https://doi.org/10.1016/s0167-0115(02)00283-5

    Article  CAS  Google Scholar 

  16. Belgardt BF, Okamura T, Brüning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587(Pt 22):5305–5314. https://doi.org/10.1113/jphysiol.2009.179192

    Article  CAS  Google Scholar 

  17. Berthoud HR, Jeanrenaud B (1979) Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105(1):146–151. https://doi.org/10.1210/endo-105-1-146

    Article  CAS  Google Scholar 

  18. Monroe MB, Seals DR, Shapiro LF, Bell C, Johnson D, Parker JP (2001) Direct evidence for tonic sympathetic support of resting metabolic rate in healthy adult humans. Am J Physiol Endocrinol Metab 280(5):E740-744. https://doi.org/10.1152/ajpendo.2001.280.5.E740

    Article  CAS  Google Scholar 

  19. Holmer H, Ekman B, Björk J et al (2009) Hypothalamic involvement predicts cardiovascular risk in adults with childhood onset craniopharyngioma on long-term GH therapy. Eur J Endocrinol 161(5):671–679. https://doi.org/10.1530/EJE-09-0449

    Article  CAS  Google Scholar 

  20. Muller HL, Faldum A, Etavard-Gorris N et al (2003) Functional capacity, obesity and hypothalamic involvement: cross-sectional study on 212 patients with childhood craniopharyngioma. Klin Padiatr 215(6):310–314. https://doi.org/10.1055/s-2003-45499

    Article  CAS  Google Scholar 

  21. Roth CL (2015) Hypothalamic obesity in craniopharyngioma patients: disturbed energy homeostasis related to extent of hypothalamic damage and its implication for obesity intervention. J Clin Med 4(9):1774–1797. https://doi.org/10.3390/jcm4091774

    Article  CAS  Google Scholar 

  22. Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220(2):T25-46. https://doi.org/10.1530/JOE-13-0398

    Article  CAS  Google Scholar 

  23. Babcock Gilbert S, Roth LW (2015) Hypothalamic obesity. Minerva Endocrinol 40(1):61–70

    CAS  Google Scholar 

  24. Brobeck JR, Tepperman J, Long CN (1943) Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med 15(6):831–853

    CAS  Google Scholar 

  25. De Vile CJ, Grant DB, Kendall BE et al (1996) Management of childhood craniopharyngioma: can the morbidity of radical surgery be predicted? J Neurosurg 85(1):73–81. https://doi.org/10.3171/jns.1996.85.1.0073

    Article  Google Scholar 

  26. Elliott RE, Sands SA, Strom RG, Wisoff JH (2010) Craniopharyngioma Clinical Status Scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg Focus 28(4):E2. https://doi.org/10.3171/2010.2.FOCUS09304

    Article  Google Scholar 

  27. Elowe-Gruau E, Beltrand J, Brauner R et al (2013) Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J Clin Endocrinol Metab 98(6):2376–2382. https://doi.org/10.1210/jc.2012-3928

    Article  CAS  Google Scholar 

  28. Fjalldal S, Follin C, Gabery S et al (2019) Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity. Int J Obes 43(3):533–544. https://doi.org/10.1038/s41366-018-0185-z

    Article  CAS  Google Scholar 

  29. Mortini P, Gagliardi F, Bailo M et al (2016) Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 51(1):148–162. https://doi.org/10.1007/s12020-015-0683-x

    Article  CAS  Google Scholar 

  30. Van Gompel JJ, Nippoldt TB, Higgins DM, Meyer FB (2010) Magnetic resonance imaging-graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg Focus 28(4):E3. https://doi.org/10.3171/2010.1.FOCUS09303

    Article  Google Scholar 

  31. Bogusz A, Boekhoff S, Warmuth-Metz M, Calaminus G, Eveslage M, Müller HL (2019) Posterior hypothalamus-sparing surgery improves outcome after childhood craniopharyngioma. Endocr Connect 8(5):481–492. https://doi.org/10.1530/EC-19-0074

    Article  Google Scholar 

  32. Joly-Amado A, Cansell C, Denis RGP et al (2014) The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract Res Clin Endocrinol Metab 28(5):725–737. https://doi.org/10.1016/j.beem.2014.03.003

    Article  Google Scholar 

  33. King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87(2):221–244. https://doi.org/10.1016/j.physbeh.2005.10.007

    Article  CAS  Google Scholar 

  34. Roth CL, Eslamy H, Werny D et al (2015) Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity 23(6):1226–1233. https://doi.org/10.1002/oby.21067

    Article  Google Scholar 

  35. Daubenbüchel AMM, Müller HL (2015) Neuroendocrine disorders in pediatric craniopharyngioma patients. J Clin Med 4(3):389–413. https://doi.org/10.3390/jcm4030389

    Article  CAS  Google Scholar 

  36. Müller HL (2016) Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr Opin Endocrinol Diabetes Obes 23(1):81–89. https://doi.org/10.1097/MED.0000000000000214

    Article  CAS  Google Scholar 

  37. Roth CL (2011) Hypothalamic obesity in patients with craniopharyngioma: profound changes of several weight regulatory circuits. Front Endocrinol 2:49. https://doi.org/10.3389/fendo.2011.00049

    Article  Google Scholar 

  38. van Swieten MMH, Pandit R, Adan RAH, van der Plasse G (2014) The neuroanatomical function of leptin in the hypothalamus. J Chem Neuroanat 61–62:207–220. https://doi.org/10.1016/j.jchemneu.2014.05.004

    Article  CAS  Google Scholar 

  39. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671. https://doi.org/10.1038/35007534

    Article  CAS  Google Scholar 

  40. Roth C, Wilken B, Hanefeld F, Schröter W, Leonhardt U (1998) Hyperphagia in children with craniopharyngioma is associated with hyperleptinaemia and a failure in the downregulation of appetite. Eur J Endocrinol 138(1):89–91. https://doi.org/10.1530/eje.0.1380089

    Article  CAS  Google Scholar 

  41. Fruhwürth S, Vogel H, Schürmann A, Williams KJ (2018) Novel insights into how overnutrition disrupts the hypothalamic actions of leptin. Front Endocrinol 9:89. https://doi.org/10.3389/fendo.2018.00089

    Article  Google Scholar 

  42. Kwon O, Kim KW, Kim MS (2016) Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 73(7):1457–1477. https://doi.org/10.1007/s00018-016-2133-1

    Article  CAS  Google Scholar 

  43. Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10(6):679–689. https://doi.org/10.1242/dmm.026609

    Article  CAS  Google Scholar 

  44. Tokunaga K, Bray GA, Matsuzawa Y (1993) Improved yield of obese rats using a double coordinate system to locate the ventromedial or paraventricular nucleus. Brain Res Bull 32(2):191–194. https://doi.org/10.1016/0361-9230(93)90074-L

    Article  CAS  Google Scholar 

  45. Schoelch C, Hübschle T, Schmidt I, Nuesslein-Hildesheim B (2002) MSG lesions decrease body mass of suckling-age rats by attenuating circadian decreases of energy expenditure. Am J Physiol Endocrinol Metab 283(3):E604-611. https://doi.org/10.1152/ajpendo.00439.2001

    Article  CAS  Google Scholar 

  46. Roth CL, Blevins JE, Ralston M et al (2011) A novel rodent model that mimics the metabolic sequelae of obese craniopharyngioma patients. Pediatr Res 69(3):230–236. https://doi.org/10.1203/PDR.0b013e3182083b67

    Article  Google Scholar 

  47. Godil SS, Tosi U, Gerges M et al (2021) Long-term tumor control after endoscopic endonasal resection of craniopharyngiomas: comparison of gross-total resection versus subtotal resection with radiation therapy. J Neurosurg. https://doi.org/10.3171/2021.5.JNS202011

    Article  Google Scholar 

  48. Grewal MR, Spielman DB, Safi C et al (2020) Gross total versus subtotal surgical resection in the management of craniopharyngiomas. Allergy Rhinol 11:2152656720964158. https://doi.org/10.1177/2152656720964158

    Article  Google Scholar 

  49. Yuen KCJ, Kołtowska-Häggström M, Cook DM et al (2014) Primary treatment regimen and diabetes insipidus as predictors of health outcomes in adults with childhood-onset craniopharyngioma. J Clin Endocrinol Metab 99(4):1227–1235. https://doi.org/10.1210/jc.2013-3631

    Article  CAS  Google Scholar 

  50. Müller HL, Emser A, Faldum A et al (2004) Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab 89(7):3298–3305. https://doi.org/10.1210/jc.2003-031751

    Article  CAS  Google Scholar 

  51. Patel KS, Raza SM, McCoul ED et al (2015) Long-term quality of life after endonasal endoscopic resection of adult craniopharyngiomas. J Neurosurg 123(3):571–580. https://doi.org/10.3171/2014.12.JNS141591

    Article  Google Scholar 

  52. Lemaire JJ, Nezzar H, Sakka L et al (2013) Maps of the adult human hypothalamus. Surg Neurol Int 4(Suppl 3):S156–S163. https://doi.org/10.4103/2152-7806.110667

    Article  Google Scholar 

Download references

Acknowledgements

Anjile An, MPH, was partially supported by the National Center for Advancing Translational Science of the National Institute of Health under Award number UL1TR002384.

Funding

This research did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

GAD contributed to the study conception and design. Surgeries were performed by BC, RR, and THS. Material preparation and data collection were performed by KNR. Radiology imaging analysis were performed by SBS, CDP, and JEL. Radiology figures were prepared by SBS. Statistical analysis was performed by AA. The first draft of the manuscript was written by KNR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kharisa N. Rachmasari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Institutional Review Board approval was obtained.

Informed consent

Not required for this study type.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachmasari, K.N., Strauss, S.B., Phillips, C.D. et al. Posterior hypothalamic involvement on pre-operative MRI predicts hypothalamic obesity in craniopharyngiomas. Pituitary 26, 105–114 (2023). https://doi.org/10.1007/s11102-022-01294-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01294-0

Keywords

Navigation