Skip to main content

Advertisement

Log in

Growth hormone secreting pituitary adenomas show distinct extrasellar extension patterns compared to nonfunctional pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Patterns of extension of pituitary adenomas (PA) may vary according to PA subtype. Understanding extrasellar extension patterns in growth hormone PAs (GHPA) vis-a-vis nonfunctional PAs (NFPAs) may provide insights into the biology of GHPA and future treatment avenues.

Methods

Preoperative MR imaging (MRI) in 179 consecutive patients treated surgically for NFPA (n = 139) and GHPA (n = 40) were analyzed to determine patterns of extrasellar growth. Extension was divided into two principal directions: cranio-caudal (measured by infrasellar/suprasellar extension), and lateral cavernous sinus invasion (CSI) determined by Knosp grading score of 3–4. Suprasellar extension was defined as tumor extension superior to the tuberculum sellae- dorsum sellae line, and inferior extension as invasion through the sellar floor into the sphenoid sinus or clivus. Categorical analysis was performed using Fisher’s exact test.

Results

GHPAs were overall more likely to remain purely intrasellar compared to NFPA (50% vs 26%, p < 0.001). GHPAs, however, were 7 times more likely to exhibit isolated infrasellar extension compared to NFPA (20% vs 2.8%, p = 0.001). Conversely, NFPAs were twice as likely to exhibit isolated suprasellar extension compared to GHPA (60% vs 28%, p < 0.001), as well as combined suprasellar/infrasellar extension (25% vs 3%, p = 0.011). There were no overall differences in CSI between the two subgroups.

Discussion

GHPA and NFPA demonstrate distinct extrasellar extension patterns on MRI. GHPAs show proclivity for inferior extension with bony invasion, whereas NFPAs are more likely to exhibit suprasellar extension through the diaphragmatic aperture. These distinctions may have implications into the biology and future treatment of PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Melmed S (2020) Pituitary-tumor endocrinopathies. N Engl J Med 382:937–950. https://doi.org/10.1056/NEJMra1810772

    Article  CAS  PubMed  Google Scholar 

  2. Gittleman H, Ostrom QT, Farah PD et al (2014) Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J Neurosurg 121:527–535. https://doi.org/10.3171/2014.5.JNS131819

    Article  PubMed  Google Scholar 

  3. Fleseriu M, Führer-Sakel D, van der Lely AJ, et al (2021) More than a decade of real-world experience of pegvisomant for acromegaly: ACROSTUDY. Eur J Endocrinol EJE-21-0239.R1. https://doi.org/10.1530/EJE-21-0239

  4. Bogusławska A, Korbonits M (2021) Genetics of acromegaly and gigantism. J Clin Med 10:1377. https://doi.org/10.3390/jcm10071377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Corica G, Ceraudo M, Campana C et al (2020) Octreotide-resistant acromegaly: challenges and solutions. Ther Clin Risk Manag 16:379–391. https://doi.org/10.2147/TCRM.S183360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colao A, Auriemma RS, Lombardi G, Pivonello R (2011) Resistance to somatostatin analogs in acromegaly. Endocr Rev 32:247–271. https://doi.org/10.1210/er.2010-0002

    Article  CAS  PubMed  Google Scholar 

  7. Lim DST, Fleseriu M (2017) The role of combination medical therapy in the treatment of acromegaly. Pituitary 20:136–148. https://doi.org/10.1007/s11102-016-0737-y

    Article  CAS  PubMed  Google Scholar 

  8. Monsalves E, Larjani S, Loyola Godoy B et al (2014) Growth patterns of pituitary adenomas and histopathological correlates. J Clin Endocrinol Metab 99:1330–1338. https://doi.org/10.1210/jc.2013-3054

    Article  CAS  PubMed  Google Scholar 

  9. Zada G, Lin N, Laws ER (2010) Patterns of extrasellar extension in growth hormone-secreting and nonfunctional pituitary macroadenomas. Neurosurg Focus 29:E4. https://doi.org/10.3171/2010.7.FOCUS10155

    Article  PubMed  Google Scholar 

  10. Hagiwara A, Inoue Y, Wakasa K et al (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228:533–538. https://doi.org/10.1148/radiol.2282020695

    Article  PubMed  Google Scholar 

  11. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617. https://doi.org/10.1227/00006123-199310000-00008

    Article  CAS  PubMed  Google Scholar 

  12. Melmed S, Bronstein MD, Chanson P et al (2018) A Consensus Statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol 14:552–561. https://doi.org/10.1038/s41574-018-0058-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuhn E, Chanson P (2017) Cabergoline in acromegaly. Pituitary 20:121–128. https://doi.org/10.1007/s11102-016-0782-6

    Article  CAS  PubMed  Google Scholar 

  14. Donoho DA, Bose N, Zada G, Carmichael JD (2017) Management of aggressive growth hormone secreting pituitary adenomas. Pituitary 20:169–178. https://doi.org/10.1007/s11102-016-0781-7

    Article  CAS  PubMed  Google Scholar 

  15. Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355:2558–2573. https://doi.org/10.1056/NEJMra062453

    Article  CAS  PubMed  Google Scholar 

  16. Bronstein MD, Fleseriu M, Neggers S et al (2016) Switching patients with acromegaly from octreotide to pasireotide improves biochemical control: crossover extension to a randomized, double-blind, Phase III study. BMC Endocr Disord 16:16. https://doi.org/10.1186/s12902-016-0096-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakhtiar Y, Hanaya R, Tokimura H et al (2014) Geometric survey on magnetic resonance imaging of growth hormone producing pituitary adenoma. Pituitary 17:142–149. https://doi.org/10.1007/s11102-013-0479-z

    Article  CAS  PubMed  Google Scholar 

  18. Gruppetta M, Vassallo J (2016) Epidemiology and radiological geometric assessment of pituitary macroadenomas: population-based study. Clin Endocrinol 85:223–231. https://doi.org/10.1111/cen.13064

    Article  CAS  Google Scholar 

  19. Cuevas-Ramos D, Carmichael JD, Cooper O et al (2015) A structural and functional acromegaly classification. J Clin Endocrinol Metab 100:122–131. https://doi.org/10.1210/jc.2014-2468

    Article  CAS  PubMed  Google Scholar 

  20. Laws ER, Piepgras DG, Randall RV, Abboud CF (1979) Neurosurgical management of acromegaly. Results in 82 patients treated between 1972 and 1977. J Neurosurg 50:454–461. https://doi.org/10.3171/jns.1979.50.4.0454

    Article  PubMed  Google Scholar 

  21. Losa M, Mortini P, Barzaghi R et al (2008) Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurg 108:525–532. https://doi.org/10.3171/JNS/2008/108/3/0525

    Article  PubMed  Google Scholar 

  22. Tortora F, Negro A, Grasso LFS et al (2019) Pituitary magnetic resonance imaging predictive role in the therapeutic response of growth hormone-secreting pituitary adenomas. Gland Surg 8:S150–S158. https://doi.org/10.21037/gs.2019.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alhambra-Expósito MR, Ibáñez-Costa A, Moreno-Moreno P et al (2018) Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Sci Rep 8:6173. https://doi.org/10.1038/s41598-018-24260-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Potorac I, Beckers A, Bonneville J-F (2017) T2-weighted MRI signal intensity as a predictor of hormonal and tumoral responses to somatostatin receptor ligands in acromegaly: a perspective. Pituitary 20:116–120. https://doi.org/10.1007/s11102-017-0788-8

    Article  CAS  PubMed  Google Scholar 

  25. Zada G, Kelly DF, Cohan P et al (2003) Endonasal transsphenoidal approach for pituitary adenomas and other sellar lesions: an assessment of efficacy, safety, and patient impressions. J Neurosurg 98:350–358. https://doi.org/10.3171/jns.2003.98.2.0350

    Article  PubMed  Google Scholar 

  26. Senanayake R, Gillett D, MacFarlane J et al (2021) New types of localization methods for adrenocorticotropic hormone-dependent Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab 35:101513. https://doi.org/10.1016/j.beem.2021.101513

    Article  CAS  PubMed  Google Scholar 

  27. Fidler IJ, Yano S, Zhang R-D et al (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3:53–57. https://doi.org/10.1016/s1470-2045(01)00622-2

    Article  CAS  PubMed  Google Scholar 

  28. Guan Z, Lan H, Cai X et al (2021) Blood-brain barrier, cell junctions, and tumor microenvironment in brain metastases, the biological prospects and dilemma in therapies. Front Cell Dev Biol 9:722917. https://doi.org/10.3389/fcell.2021.722917

    Article  PubMed  PubMed Central  Google Scholar 

  29. Neman J, Termini J, Wilczynski S et al (2014) Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci USA 111:984–989. https://doi.org/10.1073/pnas.1322098111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kfoury Y, Baryawno N, Severe N et al (2021) Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell S1535–6108(21):00494–00503. https://doi.org/10.1016/j.ccell.2021.09.005

    Article  CAS  Google Scholar 

  31. Masone MC (2021) Bone marrow microenvironment in prostate cancer. Nat Rev Urol. https://doi.org/10.1038/s41585-021-00539-0

    Article  PubMed  Google Scholar 

  32. Neou M, Villa C, Armignacco R et al (2020) Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37:123-134.e5. https://doi.org/10.1016/j.ccell.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Ben-Shlomo A, Deng N, Ding E et al (2020) DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J Clin Invest 130:5738–5755. https://doi.org/10.1172/JCI138540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishioka H, Inoshita N (2018) New WHO classification of pituitary adenomas (4th edition): assessment of pituitary transcription factors and the prognostic histological factors. Brain Tumor Pathol 35:57–61. https://doi.org/10.1007/s10014-017-0307-7

    Article  PubMed  Google Scholar 

  35. Imran SA, Shankar J, Hebb ALO et al (2017) Radiological growth patterns of prolactinomas and nonfunctioning adenomas. Can J Neurol Sci 44:508–513. https://doi.org/10.1017/cjn.2017.203

    Article  PubMed  Google Scholar 

  36. Sharifi G, Sabahi M, Amin A et al (2021) Patterns of extrasellar invasive growth of pituitary adenomas with normal sellar cavity size. Clin Neurol Neurosurg 209:106942. https://doi.org/10.1016/j.clineuro.2021.106942

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have no relevant sources funding, or financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj J. Pangal.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose. The study was approved by the IRB at our institution, and patient consent was waived given the retrospective and anonymized nature of the data analysis.

Research involving human participants, their data or biological material

This study was approved by the institutional review board of the University of Southern California and was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pangal, D.J., Wishart, D., Shiroishi, M.S. et al. Growth hormone secreting pituitary adenomas show distinct extrasellar extension patterns compared to nonfunctional pituitary adenomas. Pituitary 25, 480–485 (2022). https://doi.org/10.1007/s11102-022-01217-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01217-z

Keywords

Navigation