Skip to main content
Log in

Where do the electrons go? How numerous redox processes drive phytochemical diversity

Redox processes in phytochemistry

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plants produce structurally and functionally diverse metabolites that are key to many physiological processes such as growth and development, reproduction, defense, and stress responses. Underlying this chemical diversity are numerous enzyme-catalyzed (oxidoreductase) reactions that transfer electrons between molecular species altering their respective oxidation states. Many of these oxidoreductases require redox-active components such as redox-associated electron carriers and/or redox-active metals. Furthermore, many oxidoreductases contain amino acids that are susceptible to redox-driven post-translational modifications. These redox reactions and redox-active components are widely distributed throughout primary and specialized (secondary) metabolism using electrons derived from photosynthesis, respiration, and acquired nutrients. This review illustrates the criticality of collectively analyzing the redox state of plants including the phytochemical reactions that rely on redox components, the redox state of oxidoreductases, and the balance of oxidants and antioxidants. This redox-focused perspective is essential to understanding how plants harness the power of electrons to drive phytochemical diversity for essential functions in dynamic environments. Furthermore, the increasing likelihood of adverse environmental conditions on future plant systems will inevitably alter the production and distribution of electrons resulting in escalating levels of oxidative damage. Therefore, additional protection strategies, likely involving metabolic engineering, will need to be developed to maintain a favorable redox state for plant health and the phytochemical products required for life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

2KDH:

2-Hydroxyacid dehydrogenase

ABA:

Abscisic acid

ADH:

Alcohol dehydrogenase

ALDH:

Aldehyde dehydrogenase

APR:

APS reductase

APS:

Adenosine 5′-phosphosulfate (APS)

At:

Arabidopsis thaliana

CAD:

Cinnamyl alcohol dehydrogenase

Chl:

Chlorophyll

DH:

Dehydrogenase

EC:

Enzyme classification

FAD:

Flavin adenine dinucleotide

FAD4:

Fatty acid desaturase 4

FADs:

Fatty acid desaturases

FMO:

Flavin-dependent P450s

KGR:

2-Keto-l-gulonic acid reductase

GABA:

γ-aminobutyrate

GGPP:

Geranylgeranyl pyrophosphate

GGR:

Geranylgeranyl reductase

HPPD:

4-Hydroxyphenylpyruvate dioxygenase

L-IdnDH:

L-idonate 5-dehydrogenase

LOX:

Lipoxygenase

NAD(P)(H):

Nicotinamide dinucleotide (phosphate)

P450s:

Cytochrome P450 monooxygenases

PAO:

Polyamine oxidase

PDB:

Protein Data Bank

PMN:

Plant metabolic network

PRXQ:

Peroxiredoxin q

ROS:

Reactive oxygen species

SiR:

Ferredoxin-dependent sulfite reductase

SSADH:

Succinic semialdehyde dehydrogenase

Zm:

Zea mays

References

  • Adhikari ND, Bates PD (2016) WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds. Plant Physiol 171:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22:239–244

    Article  CAS  PubMed  Google Scholar 

  • Akcapinar G, Sezerman O (2017) Computational approaches for de novo design and redesign of metal-binding sites on proteins. Biosci Rep 37:BSR20160179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B 47:1–11

    Article  CAS  Google Scholar 

  • Avalbaev AM, Somov KA, Yuldashev RA (ed), Shakirova FM (ed) (2012) Cytokinin oxidase is key enzyme of cytokinin degradation. Biochemistry (Moscow) 77:1354–1361

  • Bae E, Bingman CA, Bitto E, Aceti DJ, Phillips GN (2008) Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase. Proteins Struct Funct Bioinf 70:303–306

    Article  CAS  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153

    Article  CAS  PubMed  Google Scholar 

  • Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M (2012) Chloroplast-localized protein kinases: a step forward towards a complete inventory. J Exp Bot 63:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Benaragama I, Meesapyodsuk D, Beattie AD, Qiu X (2017) Identification and functional analysis of new peroxygenases in oat. Planta 246:711–719

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijelic A, Pretzler M, Molitor C, Zekiri F, Rompel A (2015) The structure of a plant tyrosinase from walnut leaves reveals the importance of “substrate-guiding residues” for enzymatic specificity. Angew Chem Int Ed Engl 54:14677–14680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C, Angelini R, Federico R, Ascenzi P, Mattevi A (2001) Structural bases for inhibitor binding and catalysis in polyamine oxidase. Biochemistry 40:2766–2776

    Article  CAS  PubMed  Google Scholar 

  • Birchfield AS, McIntosh CA (2020) Metabolic engineering and synthetic biology of plant natural products–a minireview. Curr Plant Biol 24:100163

    Article  Google Scholar 

  • Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936

    Article  CAS  PubMed  Google Scholar 

  • Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152

    Article  CAS  PubMed  Google Scholar 

  • Bordenave CD, Granados Mendoza C, Jiménez Bremont JF, Gárriz A, Rodríguez AA (2019) Defining novel plant polyamine oxidase subfamilies through molecular modeling and sequence analysis. BMC Evol Biol 19:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Bott AW (1999) Redox properties of electron transfer metalloproteins. Curr Sep 18:47–54

    CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Møller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broadwater JA, Whittle E, Shanklin J (2002) Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277:15613–15620

    Article  CAS  PubMed  Google Scholar 

  • Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch H-H, Kopečný D, Nebert DW, Vasiliou V (2013) Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237:189–210

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Busch KB, Fromm H (1999) Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Cahn JKB, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH (2017) A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases. ACS Synth Biol 6:326–333

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Li-Beisson Y (2020) Plant unusual fatty acids: learning from the less common. Curr Opin Plant Biol 55:66–73

    Article  CAS  PubMed  Google Scholar 

  • Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, Welsch R (2019) Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiol 179:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Hu X, Zhang X, Gao S, Ding C, Feng Y, Bao W (2017) Identification of metal ion binding sites based on amino acid sequences. PLoS ONE 12:e0183756–e0183756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpita NC, McCann MC (2020) Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem. https://doi.org/10.1074/jbc.REV120.014561

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput V, Martin A, Lejay L (2020) Redox metabolism: the hidden player in carbon and nitrogen signaling? J Exp Bot 71:3816–3826

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hoehenwarter W (2015) Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiol 169:3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Wang P, An Y, Huang J, Xu Y (2015) Structural insight into the conformational change of alcohol dehydrogenase from Arabidopsis thaliana L. during coenzyme binding. Biochimie 108:33–39

    Article  CAS  PubMed  Google Scholar 

  • Chen GE, Canniffe DP, Barnett SFH, Hollingshead S, Brindley AA, Vasilev C, Bryant DA, Hunter CN (2018) Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci Adv 4:eaaq1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin D-C, Senthil Kumar R, Suen C-S, Chien C-Y, Hwang M-J, Hsu C-H, Xuhan X, Lai ZX, Yeh K-W (2019) Plant cytosolic ascorbate peroxidase with dual catalytic activity modulates abiotic stress tolerances. iScience 16:31–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen A, Hacham Y, Welfe Y, Khatib S, Avice J-C, Amir R (2019) Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. Plant J (in press), DOI. https://doi.org/10.1111/tpj.14621

    Book  Google Scholar 

  • da Fonseca-Pereira P, Souza PVL, Hou L-Y, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM (2020) Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant Cell Environ 43:188–208

    Article  PubMed  CAS  Google Scholar 

  • Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari F, Nunes-Nesi A, Buchanan BB, Reichheld J-P, Araújo WL, Fernie AR (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci USA 112:E1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David L, Kang J, Chen S (2020) Targeted metabolomics of plant hormones and redox metabolites in stomatal immunity. Methods Mol Biol 2085:79–92

    Article  CAS  PubMed  Google Scholar 

  • De Smet B, Willems P, Fernandez-Fernandez AD, Alseekh S, Fernie AR, Messens J, Van Breusegem F (2019) In vivo detection of protein cysteine sulfenylation in plastids. Plant J 97:765–778

    Article  PubMed  CAS  Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) L-tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci USA 103:5608–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P (2019) Get the balance right: ROS homeostasis and redox signalling in fruit. Front Plant Sci 10:1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Lee CW, Lee SG, Kang H, Park CM, Kim HJ, Park H, Park H, Lee JH (2016) Crystal structure and modeling of the tetrahedral intermediate state of methylmalonate-semialdehyde dehydrogenase (MMSDH) from Oceanimonas doudoroffii. J Microbiol 54:114–121

    Article  CAS  PubMed  Google Scholar 

  • Dönertaş HM, Martínez Cuesta S, Rahman SA, Thornton JM (2016) Characterising complex enzyme reaction data. PLoS ONE 11:e0147952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumont S, Bykova NV, Khaou A, Besserour Y, Dorval M, Rivoal J (2018) Arabidopsis thaliana alcohol dehydrogenase is differently affected by several redox modifications. PLoS ONE 13:e0204530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Eilenberg H, Weiner I, Ben-Zvi O, Pundak C, Marmari A, Liran O, Wecker MS, Milrad Y, Yacoby I (2016) The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 9:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabiano C, Tezotto T, Favarin JL, Polacco J, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Faiza M, Huang S, Lan D, Wang Y (2019) New insights on unspecific peroxygenases: superfamily reclassification and evolution. BMC Evol Biol 19:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrow SC, Facchini PJ (2014) Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci 5:524

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford MM, Smythers AL, McConnell EW, Lowery SC, Kolling DRJ, Hicks LM (2019) Inhibition of TOR in Chlamydomonas reinhardtii leads to rapid cysteine oxidation reflecting sustained physiological changes. Cells 8:1171

    Article  CAS  PubMed Central  Google Scholar 

  • Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289:28095–28103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, Pochapsky TC, Temple BRS, Hicks SN, Harden TK, Jones AM (2011) Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in Arabidopsis. J Biol Chem 286:30107–30118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friso G, van Wijk KJ (2015) Posttranslational protein modifications in plant metabolism. Plant Physiol 169:1469–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S (2004) The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol 134:1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Fernie AR (2014) Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 21:1389–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Thormählen I, Daloso DM, Fernie AR (2017) The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci 22:249–262

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  CAS  PubMed  Google Scholar 

  • Gietler M, Nykiel M, Orzechowski S, Fettke J, Zagdańska B (2016) Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances. Plant Physiol Biochem 108:507–518

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gipson AB, Morton KJ, Rhee RJ, Simo S, Clayton JA, Perrett ME, Binkley CG, Jensen EL, Oakes DL, Rouhier MF, Rouhier KA (2017) Disruptions in valine degradation affect seed development and germination in Arabidopsis. Plant J 90:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo JP, Wu H, Newkirk GM, Kruss S (2019) Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol 14:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Klinman JP (1996) Lipoxygenase reaction mechanism: demonstration that hydrogen abstraction from substrate precedes dioxygen binding during catalytic turnover. Biochemistry 35:12882–12892

    Article  CAS  PubMed  Google Scholar 

  • Go Y-M, Jones DP (2013) The redox proteome. J Biol Chem 288:26512–26520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T (2018) Green light for quantitative live-cell imaging in plants. J Cell Sci 131:jcs209270

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2005) Plant metabolic diversity: a regulatory perspective. Trends Plant Sci 10:57–62

    Article  CAS  PubMed  Google Scholar 

  • Grove LE, Xie J, Yikilmaz E, Miller A-F, Brunold TC (2008) Spectroscopic and computational investigation of second-sphere contributions to redox tuning in Escherichia coli iron superoxide dismutase. Inorg Chem 47:3978–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurrieri L, Del Giudice A, Demitri N, Falini G, Pavel NV, Zaffagnini M, Polentarutti M, Crozet P, Marchand CH, Henri J (2019) Arabidopsis and Chlamydomonas phosphoribulokinase crystal structures complete the redox structural proteome of the Calvin-Benson cycle. Proc Natl Acad Sci USA 116:8048–8053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano A, Shaban M, Almousally I, Murphy DJ (2018) Identification of a dioxin-responsive oxylipin signature in roots of date palm: involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2. Sci Rep 8:13181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanikenne M, Merchant SS, Hamel P (2009) Transition metal nutrition: a balance between deficiency and toxicity. The chlamydomonas sourcebook. Elsevier, Amsterdam, pp 333–399

    Google Scholar 

  • Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T (2018) Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456–469

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Kashiwagi K, Fukuchi J, Terao K, Shirahata A, Igarashi K (1993) Correlation between the inhibition of cell growth by accumulated polyamines and the decrease of magnesium and ATP. Eur J Biochem 217:89–96

    Article  CAS  PubMed  Google Scholar 

  • Heilmann I, Pidkowich MS, Girke T, Shanklin J (2004) Switching desaturase enzyme specificity by alternate subcellular targeting. Proc Natl Acad Sci USA 101:10266–10271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held JM (2020) Redox systems biology: Harnessing the sentinels of the cysteine redoxome. Antioxid Redox Signal 32:659–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henkhaus N et al (2020) Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct 4:e00252

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbst J, Hey D, Grimm B (2019) Chapter six—posttranslational control of tetrapyrrole biosynthesis: interacting proteins, chaperones, auxiliary factors. In: Grimm B (ed) Advances in botanical research, vol 91. Academic Press, New York, pp 163–194

    Google Scholar 

  • Herlihy JH, Long TA, McDowell JM (2020) Iron homeostasis and plant immune responses: recent insights and translational implications. J Biol Chem 295:13444–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr CQ, Hausinger RP (2018) Amazing diversity in biochemical roles of Fe(II)/2-oxoglutarate oxygenases. Trends Biochem Sci 43:517–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114:3963–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2007) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  PubMed  CAS  Google Scholar 

  • Horn PJ, Benning C (2016) The plant lipidome in human and environmental health. Science 353:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Horn PJ et al (2016) Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. Plant J 86:322–348

    Article  CAS  PubMed  Google Scholar 

  • Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C (2019) PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1Δ3trans fatty acid desaturase FAD4. Plant J 102:718–729

    Article  CAS  Google Scholar 

  • Hossain MS, Dietz K-J (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866

    Article  CAS  Google Scholar 

  • Hu X, Yan A, Tan T, Sacher O, Gasteiger J (2010) Similarity perception of reactions catalyzed by oxidoreductases and hydrolases using different classification methods. J Chem Inf Model 50:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Hu J et al (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167:1731–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Willems P, Wei B, Tian C, Ferreira RB, Bodra N, Gache SAM, Wahni K, Liu K, Vertommen D (2019) Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci USA 116:21256–21261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim IM, Wu H, Ezhov R, Kayanja GE, Zakharov SD, Du Y, Tao WA, Pushkar Y, Cramer WA, Puthiyaveetil S (2020) An evolutionarily conserved iron-sulfur cluster underlies redox sensory function of the Chloroplast Sensor Kinase. Commun Biol 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7:1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2014) The mismetallation of enzymes during oxidative stress. J Biol Chem 289:28121–28128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  • Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM (2019) An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem 294:15932–15946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinich A, Flamholz A, Ren H, Kim S-J, Sanchez-Lengeling B, Cotton CAR, Noor E, Aspuru-Guzik A, Bar-Even A (2018) Quantum chemistry reveals thermodynamic principles of redox biochemistry. PLoS Comp Biol 14:e1006471

    Article  CAS  Google Scholar 

  • Johnson JR, Cobb BG, Drew MC (1994) Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L. Plant Physiol 105:61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M et al (2007) KEGG for linking genomes to life and the environment. Nucl Acids Res 36:D480–D484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3:13

    Article  Google Scholar 

  • Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002) The metacyc database. Nucl Acids Res 30:59–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufholdt D, Baillie C-K, Meyer MH, Schwich OD, Timmerer UL, Tobias L, van Thiel D, Hänsch R, Mendel RR (2016) Identification of a protein-protein interaction network downstream of molybdenum cofactor biosynthesis in Arabidopsis thaliana. J Plant Physiol 207:42–50

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, New EJ (2019) Bioinspired small-molecule tools for the imaging of redox biology. Acc Chem Res 52:623–632

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2–oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD (2013) Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development. Plant Cell 25:3824–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller Y, Bouvier F, d’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis: evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251:413–417

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hänsch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Huh G-H (2019) Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis. Vitro Cell Dev Biol Plant 55:172–179

    Article  CAS  Google Scholar 

  • Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang C, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101:1455–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Lee S, Kwon OS, Park SY, Lee SJ, Park BJ, Kim KJ (2009) Redox-switch modulation of human SSADH by dynamic catalytic loop. EMBO J 28:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Nakayama M, Toyota H, Kurisu G, Hase T (2016) Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. J Biochem 160:101–109

    Article  CAS  PubMed  Google Scholar 

  • Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K (2018) Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 8:1870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  CAS  PubMed  Google Scholar 

  • Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D (2015) Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 468:109–123

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Chen WJ, Schlau-Cohen GS (2017) Single-molecule fluorescence spectroscopy of photosynthetic systems. Chem Rev 117:860–898

    Article  CAS  PubMed  Google Scholar 

  • Kopečný D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S (2013) Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 288:9491–9507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopečný D, Končitíková R, Popelka H, Briozzo P, Vigouroux A, Kopečná M, Zalabák D, Šebela M, Skopalová J, Frébort I, Moréra S (2016) Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. FEBS J 283:361–377

    Article  PubMed  CAS  Google Scholar 

  • Korasick DA, Končitíková R, Kopečná M, Hájková E, Vigouroux A, Moréra S, Becker DF, Šebela M, Tanner JJ, Kopečný D (2019) Structural and biochemical characterization of aldehyde dehydrogenase 12, the last enzyme of proline catabolism in plants. J Mol Biol 431:576–592

    Article  CAS  PubMed  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122

    Article  CAS  PubMed  Google Scholar 

  • Krausze J, Probst C, Curth U, Reichelt J, Saha S, Schafflick D, Heinz DW, Mendel RR, Kruse T (2016) Dimerization of the plant molybdenum insertase Cnx1E is required for synthesis of the molybdenum cofactor. Biochem J 474:163–178

    Article  PubMed  CAS  Google Scholar 

  • Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P, Kramer D (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R Soc Open Sci 3:160592

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung Y, McAndrew RP, Xie X, Liu CC, Pereira JH, Adams PD, Keasling JD (2014) Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. Structure 22:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Lamesch P et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucl Acids Res 40:D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  • Li B-B, Wang X, Tai L, Ma T-T, Shalmani A, Liu W-T, Li W-Q, Chen K-M (2018) NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Front Plant Sci 9:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Ye L, Kong Q, Shou H (2019) A vacuolar membrane ferric-chelate reductase, OsFRO1, alleviates Fe toxicity in rice (Oryza sativa L). Front Plant Sci 10:700

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebthal M, Maynard D, Dietz KJ (2018) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal 28:609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Molec Sci 19:335

    Article  CAS  Google Scholar 

  • Liu Y, Munteanu CR, Kong Z, Ran T, Sahagún-Ruiz A, He Z, Zhou C, Tan Z (2019) Identification of coenzyme-binding proteins with machine learning algorithms. Comput Biol Chem 79:185–192

    Article  CAS  PubMed  Google Scholar 

  • López MA, Vicente J, Kulasekaran S, Vellosillo T, Martínez M, Irigoyen ML, Cascón T, Bannenberg G, Hamberg M, Castresana C (2011) Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J 67:447–458

    Article  PubMed  CAS  Google Scholar 

  • Lunn D, Le A, Wallis JG (2020) Castor LPCAT and PDAT1A act in concert to promote transacylation of hydroxy-fatty acid onto triacylglycerol. Plant Physiol 184:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wang W, Bittner F, Schmidt N, Berkey R, Zhang L, King H, Zhang Y, Feng J, Wen Y, Tan L, Li Y, Zhang Q, Deng Z, Xiong X, Xiao S (2016) Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in Arabidopsis. Plant Cell 28:1108–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4:697–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic press, Cambridge

    Google Scholar 

  • Martí MC, Jiménez A, Sevilla F (2020) Thioredoxin network in plant mitochondria: cysteine S-posttranslational modifications and stress conditions. Frontiers Plant Sci 11:1476

    Article  Google Scholar 

  • Martinez S, Hausinger RP (2015) Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J Biol Chem 290:20702–20711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C et al (2020) Endogenous biosynthesis of S-nitrosoglutathione from nitro-fatty acids in plants. Frontiers Plant Sci 11:962

    Article  Google Scholar 

  • Matelska D, Shabalin IG, Jabłońska J, Domagalski MJ, Kutner J, Ginalski K, Minor W (2018) Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase. BMC Evol Biol 18:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell EW, Berg P, Westlake TJ, Wilson KM, Popescu GV, Hicks LM, Popescu SC (2019) Proteome-wide analysis of cysteine reactivity during effector-triggered immunity. Plant Physiol 179:1248–1264

    Article  CAS  PubMed  Google Scholar 

  • Meadows CW, Mingardon F, Garabedian BM, Baidoo EEK, Benites VT, Rodrigues AV, Abourjeily R, Chanal A, Lee TS (2018) Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity. Biotechnol Biofuels 11:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288

    Article  CAS  PubMed  Google Scholar 

  • Mendoza N, Silva EME (2018) Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. In: Asao T, Asaduzzaman Md (eds) Phytochemicals: source of antioxidants and role in disease prevention, Chap 3, BoD–Books on Demand

  • Merchant SS (2010) The elements of plant micronutrients. Plant Physiol 154:512–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missihoun TD, Kotchoni SO, Bartels D (2018) Aldehyde dehydrogenases function in the homeostasis of pyridine nucleotides in Arabidopsis thaliana. Sci Rep 8:2936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell AJ, Weng J-K (2019) Unleashing the synthetic power of plant oxygenases: from mechanism to application. Plant Physiol 179:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock H-P, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta Proteins Proteomics 1864:967–973

    Article  CAS  Google Scholar 

  • Mot AC, Puscas C, Miclea P, Naumova-Letia G, Dorneanu S, Podar D, Dissmeyer N, Silaghi-Dumitrescu R (2018) Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana. Sci Rep 8:13714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA ΔEFG. Nature 465:248–251

    Article  CAS  PubMed  Google Scholar 

  • Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL (2014) A unique Ni2 + -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78:951–963

    Article  CAS  PubMed  Google Scholar 

  • Negelein E, Wulff H (1937) Diphosphopyridinproteid, Alkohol. Acetaldehyd Biochem Z 293:62

    Google Scholar 

  • Nelson N, Junge W (2015) Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu Rev Biochem 84:659–683

    Article  CAS  PubMed  Google Scholar 

  • Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novák O, Senes A, Werner T (2018) The cytokinin oxidase/dehydrogenase CKX1 Is a membrane-bound protein requiring homooligomerization in the endoplasmic reticulum for its cellular activity. Plant Physiol 176:2024–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nietzel T et al (2020) Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci 117:741–751

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Okamoto K (2000) The role of the [2Fe–2S] cluster centers in xanthine oxidoreductase. J Inorg Biochem 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Nisler J, Kopečný D, Končitíková R, Zatloukal M, Bazgier V, Berka K, Zalabák D, Briozzo P, Strnad M, Spíchal L (2016) Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol Biol 92:235–248

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Hager J, Li S (2011) Biosynthesis of NAD and its manipulation in plants. In: Rébeillé F, Douce R (eds) Advances in Botanical Research, vol 58. Academic Press, New York, pp 153–201

    Google Scholar 

  • Norris SR, Shen X, Della Penna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary B, Plaxton WC (2020) Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. Curr Opin Plant Biol 55:28–37

    Article  PubMed  CAS  Google Scholar 

  • Offenbacher AR, Iavarone AT, Klinman JP (2018) Hydrogen–deuterium exchange reveals long-range dynamical allostery in soybean lipoxygenase. J Biol Chem 293:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge J, Thrower N, Mhaske V, Stymne S, Baxter M, Yang W, Liu J, Shaw K, Shorrosh B, Zhang M, Wilkerson C, Matthäus B (2018) PlantFAdb: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant J 96:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE (2018) Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radical Biol Med 122:202–220

    Article  CAS  Google Scholar 

  • Özparpucu M, Rüggeberg M, Gierlinger N, Cesarino I, Vanholme R, Boerjan W, Burgert I (2017) Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD). Plant J 91:480–490

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:1–16

    Article  CAS  Google Scholar 

  • Pang C-H, Wang B-S (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan M-T, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113

    Chapter  Google Scholar 

  • Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P (2020) The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. New Phytol 225:400–412

    Article  CAS  PubMed  Google Scholar 

  • Persson B, Hedlund J, Jörnvall H (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell Mol Life Sci 65:3879–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessarakli M (2016) Handbook of photosynthesis. CRC Press, Boca Raton

    Google Scholar 

  • Petrie JR et al (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS One 9:e85061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schomburg D (2016) BRENDA in 2017: new perspectives and new tools in BRENDA. Nucl Acids Res 43(D1):gkw952

    Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology—a charging concept. Plant Physiol Biochem 48:292–300

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Pospíšil P, Tada M (2019) Reactive oxygen species (ROS) detection methods in biological system. Front Physiol 10:1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Biol 47:245–271

    Article  CAS  Google Scholar 

  • Ramanathan A, Agarwal PK (2011) evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol 9:e1001193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256

    Article  CAS  PubMed  Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta Gene Regul Mech 1819:186–194

    Article  CAS  Google Scholar 

  • Richter AS, Pérez-Ruiz JM, Cejudo FJ, Grimm B (2018) Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Lett 592:3111–3115

    Article  CAS  PubMed  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res Rev 681:169–179

    Article  CAS  Google Scholar 

  • Rudyk O, Eaton P (2014) Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-May E, Segura-Cabrera A, Elizalde-Contreras JM, Shannon LM, Loyola-Vargas VM (2019) A recent advance in the intracellular and extracellular redox post-translational modification of proteins in plants. J Molec Recognit 32:e2754

    Article  CAS  Google Scholar 

  • Rumpel S, Siebel JF, Diallo M, Fares C, Reijerse EJ, Lubitz W (2015) Structural insight into the complex of ferredoxin and [FeFe] hydrogenase from Chlamydomonas reinhardtii. ChemBioChem 16:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Sánchez M, Palacios Ò, Buchensky C, Sabio L, Gomez-Casati DF, Pagani MA, Capdevila M, Atrian S, Dominguez-Vera JM (2018) Copper redox chemistry of plant frataxins. J Inorg Biochem 180:135–140

    Article  PubMed  CAS  Google Scholar 

  • Santra M, Dill KA, de Graff AMR (2019) Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci USA 116:22173–22178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M, Moffatt B, Saechao M, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154

    Article  CAS  PubMed  Google Scholar 

  • Sawyer A, Winkler M (2017) Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. Photosynth Res 134:307–316

    Article  CAS  PubMed  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Schlaich NL (2007) Flavin-containing monooxygenases in plants: looking beyond detox. Trends Plant Sci 12:412–418

    Article  CAS  PubMed  Google Scholar 

  • Schläpfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173:2041–2059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt SB, Husted S (2019) The biochemical properties of manganese in plants. Plants (Basel) 8:E381

    Article  CAS  Google Scholar 

  • Schönberg A et al (2014) The peptide microarray “ChloroPhos1.0” identifies new phosphorylation targets of plastid casein kinase II (pCKII) in Arabidopsis thaliana. PLoS ONE 9:108344

    Article  CAS  Google Scholar 

  • Schuler MA (1996) Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 15:235–284

    Article  CAS  Google Scholar 

  • Schwarzländer M, Dick TP, Meyer AJ, Morgan B (2015) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24:680–712

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Guy JE, Mishra G, Lindqvist Y (2009) Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem 284:18559–18563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Carroll KS (2020) Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. Acc Chem Res 53:20–31

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Liu W, Yao Y, Wei Y, Chan Z (2017) Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. Plant Sci 262:24–31

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC, Vasiliou V (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biol Med 56:89–101

    Article  CAS  Google Scholar 

  • Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73–95

    Article  CAS  PubMed  Google Scholar 

  • Springer A, Kang C, Rustgi S, von Wettstein D, Reinbothe C, Pollmann S, Reinbothe S (2016) Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci 113:3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Srivastava S, Brychkova G, Yarmolinsky D, Soltabayeva A, Samani T, Sagi M (2017) Aldehyde oxidase 4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification. Plant Physiol 173:1977–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegemann B, Klebe G (2012) Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space. Proteins Struct Funct Bioinf 80:626–648

    Article  CAS  Google Scholar 

  • Stiti N, Adewale IO, Petersen J, Bartels D, Kirch H-H (2011a) Engineering the nucleotide coenzyme specificity and sulfhydryl redox sensitivity of two stress-responsive aldehyde dehydrogenase isoenzymes of Arabidopsis thaliana. Biochem J 434:459–471

    Article  CAS  PubMed  Google Scholar 

  • Stiti N, Missihoun T, Kotchoni S, Kirch H-H, Bartels D (2011b) Aldehyde dehydrogenases in Arabidopsis thaliana: biochemical requirements, metabolic pathways, and functional analysis. Front Plant Sci 2:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiti N, Chandrasekar B, Strubl L, Mohammed S, Bartels D, van der Hoorn RAL (2016) Nicotinamide cofactors suppress active-site labeling of aldehyde dehydrogenases. ACS Chem Biol 11:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ, Saito K (2015) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32:212–229

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Nielsen J, Fernie AR (2017) Engineering central metabolism—a grand challenge for plant biologists. Plant J 90:749–763

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Oster U, Kruse E, Rüdiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense rna for geranylgeranyl reductase. Plant Physiol 120:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opinion Biotechnol 42:126–132

    Article  CAS  Google Scholar 

  • Tehseen M, Cairns N, Sherson S, Cobbett CS (2010) Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2:556–564

    Article  CAS  PubMed  Google Scholar 

  • Tian X et al (2018) Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci 115:E5410–E5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipton K, McDonald A (2018) A brief guide to enzyme nomenclature and classification. IUBMB

  • Todorovic S, Teixeira M (2018) Resonance Raman spectroscopy of Fe–S proteins and their redox properties. J Biol Inorg Chem 23:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Pattanayak GK (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Springer, Dordrecht, pp 63–94

    Chapter  Google Scholar 

  • Usher S et al (2017) Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Valasatava Y, Andreini C, Rosato A (2015) Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites. Sci Rep 5:9486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valasatava Y, Rosato A, Furnham N, Thornton JM, Andreini C (2018) To what extent do structural changes in catalytic metal sites affect enzyme function? J Inorg Biochem 179:40–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veitch NC (2004) Structural determinants of plant peroxidase function. Phytochem Rev 3:3–18

    Article  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2013) Metabolic engineering of plant secondary metabolism. Springer, Berlin

    Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • von Schumann G, Gao S, Stöckigt J (2002) Vomilenine reductase—a novel enzyme catalyzing a crucial step in the biosynthesis of the therapeutically applied antiarrhythmic alkaloid ajmaline. Bioorg Med Chem 10:1913–1918

    Article  Google Scholar 

  • Wang Y et al (2014) EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Nucl Acids Res 42:D496–D502

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Cheng H, Sun L, He S, Hao F (2020) Redox components: key regulators of epigenetic modifications in plants. Int J Molec Sci 21:1419

    Article  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Webb EC (1992) Enzyme nomenclature: 1992 recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes. Academic Press, San Diego

    Google Scholar 

  • White MD et al (2020) Structures Arabidopsis thaliana oxygen-sensing plant cysteine oxidases 4 and 5 enable targeted manipulation of their activity. Proc Natl Acad Sci 117:23140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle EJ, Cai Y, Keereetaweep J, Chai J, Buist PH, Shanklin J (2020) Castor stearoyl-ACP desaturase can synthesize a vicinal diol by dioxygenase chemistry. Plant Physiol. https://doi.org/10.1104/pp.19.01111

    Article  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, Kang C (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Yu X-H, Rawat R, Shanklin J (2011) Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol 11:1–10

    Article  CAS  Google Scholar 

  • Yu XH et al (2018) Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnol J 16:926–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by East Carolina University- Division of Research, Economic Development and Engagement. The author would like to acknowledge the extremely useful Plant Metabolic Network database that this review used extensively. The author would like to acknowledge researchers not cited in this review due to space limitations who have contributed to enhancing our understanding of plant redox processes. Finally, the author would like to thank Adam Offenbacher, East Carolina University, for helpful discussions on the manuscript and redox biochemistry topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Horn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, P.J. Where do the electrons go? How numerous redox processes drive phytochemical diversity. Phytochem Rev 20, 367–407 (2021). https://doi.org/10.1007/s11101-020-09738-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09738-w

Keywords

Navigation