Skip to main content

Advertisement

Log in

New advances in chemical defenses of plants: researches in calceolariaceae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Evidences about the biosynthesis of secondary metabolites from plants point to constitutive or induce chemical defense generated for protection against to different phytopathogenic attack. Calceolaria spp. is regarded both as a notorious weed and as a popular ornamental garden plant and have medicinal application. Some taxa of the America distributed Calceolaria genus are toxic to insects, fungi and several bacteria strains, and its effect has been associated with the presence of phenolics. Calceolaria spp. produces a number of iridoids, flavonoids, naphthoquinones and phenylpropanoids that have been shown to possess interesting biological activities. All these aspects are considered in this review to allow an evaluation of the potential for utilization of the large biodiversity of Calceolaria available. An up-to-date of the phytochemistry and biological activities of several members of the Calceolariaceae family is show. New iridoids, flavonoids and phenylpropanoids for these Calceolaria species have been isolated, identified and tested for their antifeedant, igr, insecticidal, antimicrobial, anticancer, proteinase, tyrosinase, and acetylcholinesterase inhibitory activities. Until now mixtures of flavonoids have been found to be potent insecticides and fungicides, followed by phenylpropanoids mixtures and iridoids showed to be antifeedant and in some cases repellent and attractant. Dose-dependent experiments shows that flavonoids are insecticidal against S. frugiperda and D. melanogaster at early growth stages. Bactericidal and fungicidal activity showed that dunnione (a naphthoquinone) have potent activity as fungistatic and fungicidal. O-methylflavonols, and different mixtures of them were very effective fungistatic. However, fungistatic quercetin and dunnione both combined with sublethal amount of kaempferol and gallic acid showed a strong fungicidal activity against phytopathogenic strains. Additionally, naphthoquinones possess a promissory activity as anticancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar Y, Isman MB (2013) Plant natural products for pest management: the magic of mixtures. In: Ishaaya I, Reddy Palli S, Rami Horowitz A (eds) Advanced technologies for managing insect pests. Springer, Netherland, pp 231–247

  • Akhtar Y, Yeoung YR, Isman MB (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochem Rev 7:77–88

    CAS  Google Scholar 

  • Akhtar Y, Isman MB, Lee Ch-H, Lee S-G, Lee H-S (2012) Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and green house conditions. Ind Crops Prod 37(1):536–541

    CAS  Google Scholar 

  • Alout H, Labbe P, Berthomieu A, Djogbenou L, Leonetti J-P, Fort Ph, Weill M (2012) Novel AChE inhibitors for sustainable insecticide resistance management. PLoS-ONE 7(10): e47125,1–8. doi:10.1371/journal.pone.0047125

  • Anderson S (2006) On the phylogeny of the genus Calceolaria (Calceolariaceae) as inferred from ITS and plastid matK sequences. Taxon 55(1):125–137

    Google Scholar 

  • Berenbaum MR (1989) North American ethnobotanicals as sources of novel-plant based insecticides. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. ACS symposium series. American Chemical Society, Washington, vol 387, pp 11–24)

  • Berenbaum MR (1990) Evolution of specialization. In insect-umbellifer associations. Annu Rev Entomol 35:319–343

    Google Scholar 

  • Berenbaum MR (2002) Postgenomic chemical ecology: from genetic code to ecological interactions. J Chem Ecol 28(5):873–896

    CAS  PubMed  Google Scholar 

  • Bowers MD (1981) Unpalatability as a defense strategy of western checkerspot butterflies (Euphydrias Scudder, Nymphalidae). Evolution 35(2):367–375

    Google Scholar 

  • Bravo HR, Copaja SV, Figueroa-Duarte S, Lamborot M, San Martin J (2005) 1,4-Benzoxazin-3-one, 2-benzoxazolinone and Gallic acid from Calceolaria thyrsiflora Graham and their antibacterial activity. Z Naturforsch C 60(5/6):389–393

    CAS  PubMed  Google Scholar 

  • Bruckner K, Bozic D, Manzano D, Papaefthimiou D, Pateraki I, Scheler U, Ferrer A, de Vos RCH, Kanellis AK, Tissier A (2014) Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101:52–64

    CAS  PubMed  Google Scholar 

  • Calderón JS, Cespedes CL, Rosas R, Gomez-Garibay F, Salazar JR, Lina L, Aranda E, Kubo I (2001) Acetylcholinesterase and insect growth inhibitory activities of Gutierrezia microcephala on fall armyworm Spodoptera frugiperda J. E. Smith. Z. Naturforschung 56c: 382–394

  • Cao J, Xia X, Dai X, Xiao J, Wang Q, Andrae-Marobela K, Okatch H (2013) Flavonoids profiles, antioxidant, acetylcholinesterase inhibition activities of extract from Dryoathyrium boryanum (Willd.) Ching. Food Chem Toxicol 55:121–128

    CAS  PubMed  Google Scholar 

  • Capanoglu E (2010) The potential of priming in food production. Trends Food Sci Technol 21:399–407

    CAS  Google Scholar 

  • Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22:609–619

    CAS  PubMed  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Ann Rev Entomol 58:99–117

    CAS  Google Scholar 

  • Cespedes CL, Calderón J, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp. (Meliaceae). J Agric Food Chem 48:1903–1908

  • Céspedes CL, Alarcón J, Aranda E, Becerra J, Silva M (2001a) Insect growth regulatory and insecticidal activity of b-dihydroagarofurans from Maytenus spp. (Celastraceae). Z Naturforsch C 56c:603–613

  • Céspedes CL, Martínez-Vázquez M, Calderón JS, Salazar JR, Aranda E (2001b) Insect growth regulatory activity of some extracts and compounds from Parthenium argentatum on fall armyworm Spodoptera frugiperda. Z Naturforsch C 56c:95–105

  • Cespedes CL, Avila JG, Marin JC, Domínguez M, Torres P, Aranda E (2006) Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Advances in phytomedicine series, vol 3. Elsevier, The Netherlands, pp 1–27

  • Cespedes CL, Muñoz E, Lamilla L, Molina SF, Alarcon J (2013a) Insect growth regulatory, molting disruption and insecticidal activity of Calceolaria talcana (Calceolariaceae: Scrophulariaceae) and Condalia microphylla Cav@ (Rhamnaceae), Chapter 15. In: Cespedes CL, Sampietro DA, Seigler DS, Rai MK (eds) Natural antioxidants and biocides from wild medicinal plants. Cabi Publishing, Wallingford

    Google Scholar 

  • Cespedes CL, Muñoz E, Salazar JR, Yamaguchi L, Werner E, Alarcón J, Kubo I (2013b) Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae). Food Chem Toxicol 62:919–926

    CAS  PubMed  Google Scholar 

  • Cespedes CL, Salazar JR, Alarcón J (2013c) Chemistry and biological activities of Calceolaria spp. (Calceolariaceae: Scrophulariaceae). Phytochem Rev 12:733–749

    CAS  Google Scholar 

  • Cespedes CL, Salazar JR, Ariza-Castolo A, Yamaguchi L, Avila JG, Aqueveque P, Kubo I, Alarcon J (2014) Biopesticides from plants: calceolaria integrifolia s.l. Environ Res 132:391–406

    CAS  PubMed  Google Scholar 

  • Colombo PS, Flamini G, Christodoulou MS, Rodondi G, Vitalini S, Passarella D, Fico G (2014) Farinose alpine primula species: phytochemical and morphological investigations. Phytochemistry 98:151–159

    CAS  PubMed  Google Scholar 

  • Conner WE, Boada R, Schroeder, FC, Gonzalez A, Meinwald J, Eisner T (2000) Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc Nat Acad Sci 97(26):14406–14411

  • Cosacov A, Sérsic AN, Sosa V, De-Nova JA, Nylinder S, Cocucci AA (2009) New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am J Bot 96(12):2240–2255

    PubMed  Google Scholar 

  • Crombie L (1999) Natural product chemistry and its part in the defense against insects and fungi in agriculture. Pestic Sci 55:761–774

    CAS  Google Scholar 

  • De la Cruz H, Vilcapoma G, Zevallos PA (2007) Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima. Peru J Ethnopharmacol 111(2):284–294

    Google Scholar 

  • De la Cruz MG, Malpartida SB, Santiago HB, Jullian V, Bourdy G (2014) Hot and cold: Medicinal plant uses in Quechua speaking communities in the high Andes (Callejón de Huaylas, Ancash, Perú). J Ethnopharmacol 155(2):1093–1117

    PubMed  Google Scholar 

  • Di Fabio A, Bruni A, Poli F, Garbarino JA, Chamy MC, Piovano M, Nicoletti M (1995) The distribution of phenylpropanoid glycosides in Chilean Calceolaria spp. Biochem Syst Ecol 23(2):179–182

    Google Scholar 

  • Domínguez M, Nieto A, Marín JC, Keck A-S, Jeffery E, Cespedes CL (2005) Antioxidant activities of extracts from Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae). J Agric Food Chem 53:5889–5895

    PubMed  Google Scholar 

  • Domínguez M, Marín JC, Esquivel B, Cespedes CL (2007) Pensteminoside, an unusual catalpol-type iridoid from Penstemon gentianoides HBK (Plantaginaceae). Phytochemistry 68:1762–1766

    PubMed  Google Scholar 

  • Domínguez M, Keck AS, Jeffery EH, Cespedes CL (2010) Effects of extracts, flavonoids and iridoids from Penstemon gentianoides (Plantaginaceae) on inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in LPS-Activated RAW 264.7 macrophage cells and their antioxidant activity. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9(5):397–413

  • Ehrhart Ch (2000) Die gattung Calceolaria (Scrophulariaceae) in Chile. Biblioth Bot H 153:1–283

    Google Scholar 

  • Ehrhart Ch (2005) The Chilean Calceolaria integrifolia s.l. species complex (Scrophulariaceae). Syst Bot 30:383–411

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Eisner T, Eisner M, Aneshansley DJ, Wu CL, Meinwald J (2000) Chemical defense of the mint plant, Teucrium marum (Labiatae). Chemoecology 10(4):211–216

  • Engler A (1964) Sillabus der Pflanzenfamilien. Melchio H (ed) Berlin, Borntrager, vol II, p 451

  • Falcão DQ, Costa ER, Alviano DS, Alviano CS, Kuster RM, Menezes FS (2006) Atividade antioxidante e antimicrobiana de Calceolaria chelidonioides Humb. Bonpl Kunth Braz J Pharmacog 16(1):73–76

    Google Scholar 

  • Falcão DQ, Costa ER, Kuster RM, Nielloud F, Vian L, Menezes FS (2007) Evaluation of cytotoxicity, phototoxicity and genotoxicity from Calceolaria chelidonioides (Scrophulariaceae) flowers ethanol extract. Plant Med pp 73–77

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87:7713–7716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feeny PP (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical Interactions between Plants and Insects. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Feijo de Souza J, Carvalho M, Trevisan D, Schmitz W, Saridakis H (2004) Phenolic compounds and hydroxymethylfurfural from the flowers of Caesalpinia peltophoroides and their antibacterial activity. Rev Latinoamer Quim 32:25–29

    Google Scholar 

  • Feng RY, Chen WK, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41

    CAS  Google Scholar 

  • Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82(83):83–90

    PubMed  Google Scholar 

  • Fournier D, Mutero A (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108(1):19–31

    Google Scholar 

  • Garbarino JA, Chamy MC, Piovano M (2000) Chemistry of the Calceolaria genus. Structural and biological aspects. Molecules 5(3):302–303

    CAS  Google Scholar 

  • Garbarino JA, Chamy MC, Piovano M, Espinoza L, Belmonte E (2004) Diterpenoids from Calceolaria inamoena. Phytochemistry 65(7):903–908

    CAS  PubMed  Google Scholar 

  • Garbarino JA, Cardile V, Lombardo L, Chamy MC, Piovano M, Russo A (2007) Demalonyl thyrsiflorin A, a semisynthetic labdane-derived diterpenoid, induces apoptosis and necrosis in human epithelial cancer cells. Chem Biol Interact 169(3):198–206

    CAS  PubMed  Google Scholar 

  • González JA, Estevez-Braun A (1998) Effect of E-chalcone on potato-cyst nematodes (Globodera pallida and G. rostochiensis). J Agric Food Chem 46:1163–1165

    Google Scholar 

  • Gonzalez-Coloma A, Gutierrez C, Cabrera R, Reina M (1997) Silphinene derivatives: their effects and modes of action on Colorado potato Beetle. J Agric Food Chem 45:946–950

    CAS  Google Scholar 

  • Green BT, Welch KD, Panter KE, Lee ST (2013) Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem Res Toxicol 26(8):1129–1138

    CAS  PubMed  Google Scholar 

  • Guerrero A, Rosell G (2005) Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem 12:461–469

  • Harborne J, Baxter H (2001) Chemical dictionary of economic plants. Wiley, Chichester

    Google Scholar 

  • Heath JJ, Kessler A, Woebbe E, Cipollini D, Stireman JO (2014) Exploring plant defense theory in tall goldenrod, Solidago altissima. New Phytol 202:1357–1370

    PubMed  Google Scholar 

  • Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–80

    CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  Google Scholar 

  • Isman MB, Akthar Y (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 235–248

    Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19(3):140–145

    CAS  PubMed  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43(10):885–895

    CAS  PubMed  Google Scholar 

  • Kakuta H, Seki T, Hashidoko Y, Mizutani J (1992) Ent-kaurenic acid and its related compounds from glandular trichome exudate and leaf extracts of Polymnia sonchifolia. Bioscience Biotechnol Biochem 56:1562–1564

    CAS  Google Scholar 

  • Kantzanou M, Tassios PT, Tseleni-Kotsovili A, Legakis LJ, Vatopoulos AC (1999) Reduced susceptibility to vancomycin of nosocomial isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 43(5):729–731

    CAS  PubMed  Google Scholar 

  • Keane S, Ryan MF (1999) Purification, characterization, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem Mol Biol 29:1097–1104

    CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    CAS  Google Scholar 

  • Khambay BPS, Jewess PJ (2000) The potential of natural naphthoquinones as the basis for a new class of pest control agents: an overview of research at IACR-Rothamsted. Crop Prot. 19(8/10):597–601

    CAS  Google Scholar 

  • Khambay BPS, Batty D, Cahill M, Denholm I, Mead-Briggs M, Vinall S, Niemeyer HM, Simmonds MSJ (1999) Isolation, characterization, and biological activity of naphthoquinones from Calceolaria andina L. J Agric Food Chem 47(2):770–775

    CAS  PubMed  Google Scholar 

  • Khambay BPS, Batty D, Jewess PJ, Bateman GL, Holloman DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59(2):174–182

    CAS  PubMed  Google Scholar 

  • Kubo I (1997) Tyrosinase inhibitors from plants. In: Hedin P, Hollingworth R, Masler E, Miyamoto J, Thompson D (eds) Phytochemicals for pest control. ACS symposium series 658, American Chemical Society, Washington, pp 310–326

  • Kubo I, Klocke A, Asano S (1981) Insect ecdysis inhibitors from the east African medicinal plant Ajuga remota (Labiatae). Agric Biol Chem 45:1925–1927

    CAS  Google Scholar 

  • Kubo I, Muroi H, Himejima M (1993) Combination effects of antifungal nagilactones against Candida albicans and two other fungi with phenylpropanoids. J Nat Prod 56:220–226

    CAS  PubMed  Google Scholar 

  • Kubo I, Kinst-Hori I, Chauduri SK, Kubo Y, Sánchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 8:1749–1755

    CAS  PubMed  Google Scholar 

  • Kubo I, Chen Q-X, Nihei KI, Calderón JS, Cespedes CL (2003a) Tyrosinase inhibition kinetics of anisic acid. Z Naturforsch C 58c:713–718

  • Kubo I, Kinst-Hori I, Nihei KI, Soria F, Takasaki M, Calderón JS, Cespedes CL (2003b) Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects. Z Naturforsch C 58c:719–725

  • Leon E, Guillen Z, Felix LM, Chavez J, Martinez R (2009) Parasitemy of Trypanosoma cruzi in Mus musculus and preliminary in vitro study of the trypanocidal action of two species of Calceolaria in Peru. Revista de Investigacion de la Universidad Norbert Wiener, year 2009:81–88

    Google Scholar 

  • Li Sh, Shao M-W, Lu Y-H, Kong L-Ch, Jiang D-H, Zhang Y-L (2014) Phytotoxic and antibacterial metabolites from Fusarium proliferatum ZS07 isolated from the gut of long-horned grasshoppers. J Agric Food Chem 62:8997–9001

    CAS  PubMed  Google Scholar 

  • Macía MJ, García E, Vidaurre PJ (2005) An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J Ethnopharmacol 97(2):337–350

    PubMed  Google Scholar 

  • Marin JC, Cespedes CL (2007) Compuestos volatiles de plantas. Origen, emisión, efectos, análisis y aplicaciones al agro [Volatile compounds from plant. Origin, emissions, effects, analysis and agro applications]. Rev Fitotec Mex 30(4):327–351

    Google Scholar 

  • Mayhuasca O, Bonilla P, Ballon M, Ferreira M, Carrasco E (2007) Efecto antiinflamatorio en ratones de extractos de Calceolaria tripartita R&P, comparación fitoquimica con el extracto hidroalcoholico de Calceolaria melissifolia Bentham [Antiinflammatory effect in mice of extracts of Calceolaria tripartita R&P, compared phytochemical with the hydroalcoholic extract of Calceolaria melissifolia Bentham. Ciencia e Investigacion [Facultad de Farmacia y Bioquimica, UNMSM] 10(2): 71–80

  • Meinwald J (2001) Sex, violence and drugs in the world of insects: a chemist’s view. Science 5:80–92

  • Marticorena C, Quezada M (1985) Catalogo de la flora vascular de Chile. Gayana Bot 42:1–157

  • Mercado MI, Coll MV, Grau A, Catalan CAN (2010) New acyclic diterpenic acids from Yacon (Smallanthus sonchifolius) leaves. Nat Prod Commun 5:1721–1726

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 19(1):29–35

    CAS  PubMed  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Molau U (1988) Scrophulariaceae: part I. Calceolarieae. Flora Neotropica 47:1–326

    Google Scholar 

  • Molau U (2003) Two new species of Calceolaria (Scrophulariaceae) from the tropical Andes. Novon 13:101–103

    Google Scholar 

  • Montes M (1987) Aspectos de la medicación popular en la región del Bío Bío. Acta Bonaerense 6:115–124

    Google Scholar 

  • Montes M, Wilkomirsky T (1978) Plantas chilenas en medicina popular: Ciencia y Folklore. Universidad de Concepción, Concepción, Chile, Escuela de Química y Farmacia y Bioquímica

    Google Scholar 

  • Moreira X, Lundborg L, Zas R, Carrillo-Gavilan A, Borg-Karlson AK, Sampedro L (2013) Inducibility of chemical defenses by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Phytochemistry 94:113–122

    CAS  PubMed  Google Scholar 

  • Morello A, Pavani M, Garbarino JA, Chamy MC, Frey C, Mancilla J, Guerrero A, Repetto Y, Ferreira J (1995) Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112C(2):119–128

    CAS  Google Scholar 

  • Mullin ChA, Gonzalez-Coloma A, Gutierrez C, Reina M, Eichenseer H, Hollister B, Chyb S (1997) Antifeedant effects of some novel terpenoids on chrysomelidae Beetles: comparisons with alkaloids on an alkaloid-adapted and nonadapted species. J Chem Ecol 23:1851–1866

    CAS  Google Scholar 

  • Muñoz O, Montes M, Wilkomirsky T (2001) Plantas medicinales de uso en Chile, química y farmacología. Editorial Universitaria. Universidad de Chile. Vicerrectoría de Asuntos Académicos. Santiago, Chile

  • Muñoz E, Lamilla C, Marin JC, Alarcon J, Cespedes CL (2013a) Antifeedant, insect growth regulatory and insecticidal effects of Calceolaria talcana (Calceolariaceae) on Drosophila melanogaster and Spodoptera frugiperda. Ind Crop Prod 42:137–144

    Google Scholar 

  • Muñoz E, Escalona D, Salazar JR, Alarcon J, Cespedes CL (2013b) Insect growth regulatory effects by diterpenes from Calceolaria talcana Grau & Ehrhart (Calceolariaceae: Scrophulariaceae) against Spodoptera frugiperda and Drosophila melanogaster. Ind Crop Prod 45:283–292

    Google Scholar 

  • Muñoz E, Avila JG, Alarcón J, Kubo I, Cespedes CL (2013c) Tyrosinase inhibitors from Calceolaria integrifolia s.l.: Calceolaria talcana aerial parts. J Agric Food Chem 61:4336–4343

    PubMed  Google Scholar 

  • Muñoz MA, Chamy C, Bucio MA, Hernandez-Barragan A, Joseph-Nathan P (2014) Absolute configuration of scopadulane diterpenes from Calceolaria species. Tetrahed Lett 55:4274–4277

    Google Scholar 

  • Nicoletti M, Galeffi C, Messana I, Garbarino JA, Gambaro V, Nyandat E, Marini-Bettolo GB (1986) New phenylpropanoid glucosides from Calceolaria hypericina. Gazz Chim Ital 116(8):431–433

    CAS  Google Scholar 

  • Nicoletti M, Galeffi C, Messana I, Marini-Bettolo GB, Garbarino JA, Gambaro V (1988a) Studies in Calceolaria genus. Part 2. Phenylpropanoid glycosides from Calceolaria hypericina. Phytochemistry 27(2):639–641

    CAS  Google Scholar 

  • Nicoletti M, Galeffi C, Multari G, Garbarino JA, Gambaro V (1988b) Studies on the genus Calceolaria. Part 3. Polar constituents of Calceolaria ascendens. Planta Med 54(4):347–348

    CAS  PubMed  Google Scholar 

  • Ortego F, Rodriguez B, Castañera P (1995) Effects of neo-clerodane diterpenes from Teucrium on feeding behavior of Colorado potato beetle larvae. J Chem Ecol 21:1375–1386

    CAS  PubMed  Google Scholar 

  • Ortego F, López-Olguín J, Ruíz M, Castanera P (1999) Effects of toxic and deterrent terpenoids on digestive protease and detoxication enzyme activities of Colorado potato beetle larvae. Pestic Biochem Physiol 63:76–84

    CAS  Google Scholar 

  • Pang YP, Brimijoin S, Ragsdale DW, Zhu KY, Suranyi R (2012) Novel and viable acetyl- cholinesterase target site for developing effective and environmentally safe insecticides. Curr Drug Targets 13:471–482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Passi S, Nazzaro-Porro M (1981) Molecular basis of substrate and inhibitory specificity of tyrosinase: phenolic compounds. Brit J Dermatol 104(6):659–665

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. Recent Adv Phytochemistry 10:168–213

    CAS  Google Scholar 

  • Rhodes SHL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B (2013) Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson’s disease. Environ Res 126:1–8

    CAS  PubMed  Google Scholar 

  • Rosner D, Markowitz G (2013) Persistent pollutants: a brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ Res 120:126–133

    CAS  PubMed  Google Scholar 

  • Ryan JD (1979) Proteinase inhibitors. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 599–618

    Google Scholar 

  • Sachetti G, Romagnoli C, Nicoletti M, Di Fabio A, Bruni A, Poli F (1999) Glandular trichomes of Calceolaria adscendens Lidl. (Scrophulariaceae): histochemistry, development and ultrastructure. Ann Bot 83:87–92

    Google Scholar 

  • Serrano A, Palacios C, Roy G, Cespon C, Villar ML, Nocito M, Gonzalez-Porque P (1998) Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophys 350:49–54

    CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Blaney WM, Esquivel B, Rodriguez-Hahn L (1996) Effect of clerodane-type diterpenoids isolated from Salvia spp on the feeding behaviour of Spodoptera littoralis. Pestic Sci 47:17–23

    CAS  Google Scholar 

  • Simmonds MSJ, Manlove JD, Blaney WM, Khambay BPS (2002) Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol Exp Appl 102:39–47

    CAS  Google Scholar 

  • Singh ShB, Graham PL, Reamer RA, Cordingley MG (2001) Discovery, total synthesis, HRV 3C-protease inhibitory activity, and structure-activity relationships of 2-methoxystypandrone and its analogues. Bioorg Med Chem Lett 11:3143–3146

    CAS  PubMed  Google Scholar 

  • Singh-Ratan R (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Google Scholar 

  • Swain T (1979) Tannins and lignins. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, pp 657–682

    Google Scholar 

  • Takemoto K, Kamisuki Sh, Chia PTh, Kuriyama I, Mizushina Y, Sugawara F (2014) Bioactive Dihydronaphthoquinone Derivatives from Fusarium solani. J Nat Prod. doi:10.1021/np500175j

    Google Scholar 

  • Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T (2007) An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 111(1):63–81

    PubMed  Google Scholar 

  • Thomas E, Vandebroek I, Sanca S, Van Damme P (2009) Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia. J Ethnopharmacol 122(1):60–67

    PubMed  Google Scholar 

  • Torres P, Ávila JG, Romo de Vivar A, García AM, Marín JC, Aranda E, Cespedes CL (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64:463–473

    CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of the metamorphosis in insects. Annual Rev Entomol 47:467–500

  • Valladares G, Defago MT, Palacios SM, Carpinella MC (1997) Laboratory evaluationof Melia azedarach (Meliaceae) extracts against the elm leaf beetle (Coleoptera:Chrysomelidae). J Econ Entomol 90:747–750

    Google Scholar 

  • Woldemichael GM, Waechter G, Singh MP, Maiese WM, Timmermann BN (2003) Antibacterial diterpenes from Calceolaria pinifolia. J Nat Prod 66(2):242–246

    CAS  PubMed  Google Scholar 

  • Wollenweber E, Mann K, Roitman JN (1989) Flavonoid aglycons excreted by three Calceolaria species. Phytochemistry 28(8):2213–2214

    CAS  Google Scholar 

  • Xie Y, Isman MB, Feng Y, Wong A (1993) Diterpene resin acids: major active principles in tall oil against variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae). J Chem Ecol 19:1075–1084

    CAS  PubMed  Google Scholar 

  • Yamane H, Konno K, Sabelis M, Takabayashi J, Sassa T, Oikawa H (2010) Chemical defence and toxins of plants. In: Mander L, Lui H-W (eds) Comprehensive natural products ii chemistry and biology, vol 4. Elsevier, Oxford, pp 339–385

    Google Scholar 

  • Zhu F, Poelman EH, Dicke M (2014) Insect herbivore-associated organisms affect plant responses to herbivory. New Phytol. doi:10.1111/nph.12886

    PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are indebted to M.Sc. Evelyn Muñoz (Phytochemical Ecology Lab, Basic Sciences Dept., Faculty of Sciences, University of Bio Bio, Chillan, Chile) for technical assistance with the antioxidant assay and for the help in performing many insect feeding assays. To Prof. Ana Ma. Garcıa-Bores (Laboratorio de Fitoquimica, Unidad UBIPRO, FES-Iztacala, UNAM, Mexico DF, Mexico) for proteinase assays and performing antimicrobial assay in part. To Prof. David S. Seigler, Ph.D. (Emeritus Professor, Department of Plant Biology, and Curator, Herbarium of University of Illinois at Urbana-Champaign) for identification of the plant samples. CLC is grateful to CONICYT Chile through FONDECYT Program, grants # 1101003 and # 1130242 for financial support in part. IK and CLC are grateful to UC Berkeley-Chile Seed Funds for grant. This paper is based on work supported by grants from the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT), through FONDECYT Program grants 1101003 and 1130242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Cespedes.

Additional information

Phytochemistry reviews. Por invitación (Prof. Jianbo Xiao).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cespedes, C.L., Aqueveque, P.M., Avila, J.G. et al. New advances in chemical defenses of plants: researches in calceolariaceae. Phytochem Rev 14, 367–380 (2015). https://doi.org/10.1007/s11101-014-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9392-y

Keywords

Navigation