Skip to main content

Advertisement

Log in

Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Isoflavones are polyphenol compounds found mainly in legumes such as soybeans (Glycine max (L.) Merrill). These compounds can be found in different chemical forms; however, the beneficial effects for skin care have been mainly credited to their free forms. This manuscript claims to review the main effects of isoflavone aglycones on the skin, the different techniques for obtaining bioactive forms from soybeans, and the interest in incorporating them into topical systems. The benefits of dermatological application of isoflavones, as anti-aging action, estrogenic activity, wound healing properties, and antiphotocarcinogenic effects are highlighted. Moreover, the advantages and drawbacks of the extraction techniques of soybeans, methods for converting glucosides into aglycones, and purification procedures are described. Different strategies to incorporate these poorly soluble compounds in conventional or nanostructured delivery systems are also discussed. Illustrative examples especially for genistein-loaded liposomes, nanoemulsions, nanocapsules and cyclodextrin complexation are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

CO2 :

Carbon dioxide

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ER:

Estrogen receptor

HRT:

Hormone replacement therapies

IA:

Isoflavone aglycones

LogP:

Partition coefficient

MCT:

Medium chain triglycerides

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMR:

Nuclear magnetic resonance

o/w:

Oil in water

PAR-2:

Protease type 2

ROS:

Reactive oxygen species

RSM:

Response surface methodology

SLN:

Solid lipid nanoparticles

TGF-β1:

Transforming growth factor β1

UV:

Ultraviolet

UV–Vis:

Ultraviolet–visible

w/o:

Water in oil

References

  • Aguiar CL, Park YK (2004) Conversão de daidzina e genistina de soja por β-glicosidase de Aspergillus oryzae. B CEPPA 22:183–195

    CAS  Google Scholar 

  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe SI, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    CAS  PubMed  Google Scholar 

  • Albertazzi P, Purdie DW (2002) The nature and utility of the phytoestrogens: a review of the evidence. Maturitas 42:173–185

    Article  CAS  PubMed  Google Scholar 

  • Albulescu M, Popovici M (2007) Isoflavones—biochemistry, pharmacology and therapeutic use. Rev Roum Chim 52:537–550

    CAS  Google Scholar 

  • Antus S, Farkas L, Kardos-Balogh Z, Nogradi M (1975) Synthesis des dalpatins, fujikinins, glyciteins und anderer natürlicher Isoflavone. Chem Ber 108:3883–3893

    Article  CAS  Google Scholar 

  • Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW (1999) Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 155:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker W, Robinson R (1928) Synthetical experiments in the isoflavone group. Part III. Synthesis of genistein. J Chem Soc 131:3115–3118

    Article  Google Scholar 

  • Baker W, Robinson R, Simpson NM (1933) Synthetical experiments in the isoflavone group. Part VII. Synthesis of daidzein. J Chem Soc 1933:274–275

    Article  Google Scholar 

  • Barnes S (1998) Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 217:386–396

    Article  CAS  PubMed  Google Scholar 

  • Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8:89–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bayerl C, Keil D (2002) Isoflavonoide in der Behandlung der Hautalterung postmenopausaler Frauen. Aktuelle Dermatol 28:14–18

    Article  Google Scholar 

  • Becker W (1978) Solvent extraction of soybeans. J Am Oil Chem Soc 5:754–761

    Article  Google Scholar 

  • Borghetti GS, Pinto AP, Lula IS, Sinisterra RD, Teixeira HF, Bassani VL (2011) Daidzein/cyclodextrin/hydrophilic polymer ternary systems. Drug Dev Ind Pharm 37:886–893

    Article  CAS  PubMed  Google Scholar 

  • Brincat MP, Baron YM, Galea R (2005) Estrogens and the skin. Climacteric 8:110–123

    Article  CAS  PubMed  Google Scholar 

  • Britz SJ, Schomburg CJ, Kenworthy WJ (2011) Isoflavones in seeds of field-grown soybean: variation among genetic lines and environmental effects. J Am Oil Chem Soc 88:827–832

    Article  CAS  Google Scholar 

  • Campbell L, Emmerson E, Davies F, Gilliver SC, Krust A, Chambon P, Ashcroft GS, Hardman MJ (2010) Estrogen promotes cutaneous wound healing via estrogen receptor β independent of its antiinflammatory activities. J Exp Med 207:1825–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannavà C, Crupi V, Ficarra P, Guardo M, Majolino D, Mazzaglia A, Stancanelli R, Venuti V (2010) Physicochemical characterization of an amphiphilic cyclodextrin/genistein complex. J Pharm Biomed Anal 51:1064–1068

    Article  PubMed  CAS  Google Scholar 

  • Carrão-Panizzi MC, Favoni SPG, Kikuchi A (2002) Extraction time for soybean isoflavone determination. Braz Arch Biol Technol 45:515–518

    Article  Google Scholar 

  • Carrara VS, Amato AA, Neves FAR, Bazotte RB, Mandarino JMG, Nakamura CV, Filho BPD, Cortez DAG (2009) Effects of a methanolic fraction of soybean seeds on the transcriptional activity of peroxisome proliferator-activated receptors (PPAR). Braz J Med Biol Res 42:545–550

    Article  CAS  PubMed  Google Scholar 

  • César IC, Braga FC, Soares CD, Nunan EA, Pianetti GA, Condessa FA, Barbosa TA, Campos LM (2006) Development and validation of a RP-HPLC method for quantification of isoflavone aglycones in hydrolyzed soy dry extracts. J Chromatogr B 836:74–78

    Article  CAS  Google Scholar 

  • Chen KI, Erh MH, Su NW, Liu WH, Chou CC, Cheng KC (2012) Soyfoods and soybean products: from traditional use to modern applications. Appl Microbiol Biotechnol 96:9–22

    Article  CAS  PubMed  Google Scholar 

  • Chiang W-D, Shih C-J, Chu Y-H (2001) Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM. Food Chem 72:499–503

    Article  CAS  Google Scholar 

  • Cho SY, Lee YN, Park HJ (2009) Optimization of ethanol extraction and further purification of isoflavones from soybean sprout cotyledon. Food Chem 117:312–317

    Article  CAS  Google Scholar 

  • Chung H, Ji X, Canning C, Sun S, Zhou K (2010) Comparison of different strategies for soybean antioxidant extraction. J Agric Food Chem 58:4508–4512

    Article  CAS  PubMed  Google Scholar 

  • Coward L, Smith M, Kirk M, Barnes S (1998) Chemical modification of isoflavones in soyfoods during cooking and processing. Am J Clin Nutr 68:1486S–1491S

    CAS  PubMed  Google Scholar 

  • Crupi V, Ficarra R, Guardo M, Majolino D, Stancanelli R, Venuti V (2007) UV–vis and FTIR–ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins. J Pharm Biomed Anal 44:110–117

    Article  CAS  PubMed  Google Scholar 

  • Daruhazi AE, Szente L, Balogh B, Matyus P, Beni S, Takacs M, Gergely A, Horvath P, Szoke E, Lemberkovics E (2008) Utility of cyclodextrins in the formulation of genistein Part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins. J Pharm Biomed Anal 48:636–640

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh K, Amin P (2013) Formulation and evaluation of solid–lipid nanoparticle based 0.1% Soy isoflavone dermal gels. J Pharm BioSci 1:7–18

    CAS  Google Scholar 

  • Dwiecki K, Neunert G, Polewski P, Polewski K (2009) Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. J Photochem Photobiol B Biol 96:242–248

    Article  CAS  Google Scholar 

  • Eldridge AC, Kwolek WF (1983) Soybean isoflavones: effect of environment and variety on composition. J Agric Food Chem 31:394–396

    Article  CAS  PubMed  Google Scholar 

  • Emmerson E, Campbell L, Ashcroft GS, Hardman MJ (2010) The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Mol Cell Endocrinol 321:184–193

    Article  CAS  PubMed  Google Scholar 

  • Farmakalidis E, Murphy PA (1984) Semi-preparative high-performance liquid chromatographic isolation of soybean isoflavones. J Chromatogr A 295:510–514

    Article  CAS  Google Scholar 

  • Förster M, Bolzinger MA, Fessi H, Briançon S (2009) Topical delivery of cosmetics and drugs. Molecular aspects of percutaneous absorption and delivery. Eur J Dermatol 19:309–323

    PubMed  Google Scholar 

  • Franke AA, Custer LJ, Cerna CM, Narala KK (1994) Quantitation of phytoestrogens in legumes by HPLC. J Agric Food Chem 42:1905–1913

    Article  CAS  Google Scholar 

  • Georgetti SR, Casagrande R, Vicentini FTMC, Verri WA Jr, Fonseca MJV (2006) Evaluation of the antioxidant activity of soybean extract by different in vitro techniques and investigation of this activity after its incorporation in topical formulations. Eur J Pharm Biopharm 64:99–106

    Article  CAS  PubMed  Google Scholar 

  • Georgetti SR, Casagrande R, Verri WA Jr, Lopez RFV, Fonseca MJV (2008) Evaluation of in vivo efficacy of topical formulations containing soybean extract. Int J Pharm 352:189–196

    Article  CAS  PubMed  Google Scholar 

  • Hirota A, Inaba M, Chen YC, Abe N, Taki S, Yano M, Kawaii S (2004) Isolation of 8-hydroxyglycitein and 6-hydroxydaidzein from soybean miso. Biosci Biotechnol Biochem 68:1372–1374

    Article  CAS  PubMed  Google Scholar 

  • Huang ZR, Hung CF, Lin Y, Fang JY (2008) In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm 364:36–44

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Hsu BY, Wu NL, Tsui WH, Lin TJ, Su CC, Hung CF (2010) Anti-photoaging effects of soy isoflavone extract (aglycone and acetylglucoside form) from soybean cake. Int J Mol Sci 12:4782–4795

    Article  CAS  Google Scholar 

  • Hwang K, Chung RS, Schmitt JM, Buck D, Winn SR, Hollinger JO (2001) The effect of topical genistein on soft tissue wound healing in rats. J Histotechnol 24:95–99

    Article  CAS  Google Scholar 

  • Ismail B, Hayes K (2005) β-Glycosidase activity toward different glycosidic forms of isoflavones. J Agric Food Chem 53:4918–4924

    Article  CAS  PubMed  Google Scholar 

  • Kiguchi K, Constantinou A, Huberman E (1990) Genistein induced cell differentiation and protein-linked DNA strand breakage in human melanoma cells. Cancer Commun 2:271–278

    CAS  PubMed  Google Scholar 

  • Kim BN, Yeom SJ, Kin YS, Oh DK (2012) Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol Lett 34:125–129

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa S, Inoue K, Teraoka R, Morita SY (2010) Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiation-induced erythema formation. Chem Pharm Bull 58:398–401

    Article  CAS  PubMed  Google Scholar 

  • Kledjus B, Mikelová R, Petrlová J, Potesil D, Adam V, Stiborová M, Hodek P, Vacek J, Kizek R, Kuban V (2005) Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with UV–visible diode-array detection. J Chromatogr A 1084:71–79

    Article  CAS  Google Scholar 

  • Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, Saag PTV, Burg BV, Gustafsson JÅ (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263

    CAS  PubMed  Google Scholar 

  • Kuo LC, Wu RY, Lee KT (2012) A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Appl Microbiol Biotechnol 94:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Choung M-G (2011) Determination of optimal acid hydrolysis time of soybean isoflavones using drying oven and microwave assisted methods. Food Chem 129:577–582

    Article  CAS  Google Scholar 

  • Lee J, Doo EH, Kwon DY, Park JB (2008) Functionalization of isoflavones with enzymes. Food Sci Biotechnol 17:228–233

    CAS  Google Scholar 

  • Liggins J, Bluck LJC, Coward WA, Bingham A (1998) Extraction and quantification of daidzein and genistein in food. Anal Biochem 264:1–7

    Article  CAS  PubMed  Google Scholar 

  • Li-Hsun C, Ya-Chuan C, Chieh-Ming C (2004) Extracting and purifying isoflavones from defatted soybean flakes using superheated water at elevated pressures. Food Chem 84:279–285

    Article  CAS  Google Scholar 

  • Lin JY, Tournas JA, Burch JA, Monteiro-Riviere NA, Zielinski J (2008) Topical isoflavones provide effective photoprotection to skin. Photodermatol Photoimmunol Photomed 24:61–66

    Article  PubMed  Google Scholar 

  • Luthria DL, Natarajan SS (2009) Influence of sample preparation on the assay of isoflavones. Planta Med 75:704–710

    Article  CAS  PubMed  Google Scholar 

  • Luthria DL, Biswas R, Natarajan S (2007) Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem 105:325–333

    Article  CAS  Google Scholar 

  • Masaki H (2010) Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 58:85–90

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Hanamizu T, Lizuka R, Chiba K (2002) Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin. Skin Pharmacol Appl Skin Physiol 15:175–183

    Article  CAS  PubMed  Google Scholar 

  • Moraes AB, Haidar MA, Junior JMS, Simões MJ, Baracat EC, Patriarca MT (2009) The effects of topical isoflavones on postmenopausal skin: double-blind and randomized clinical trial of efficacy. Eur J Obstet Gynecol Reprod Biol 146:188–192

    Article  CAS  PubMed  Google Scholar 

  • Murphy PA (1981) Separation of genistin, daidzin and their aglucones, and coumesterol by gradient high-performance liquid chromatography. J Chromatogr A 211:166–169

    Article  CAS  Google Scholar 

  • Naim BM, Kirson GI, Bondi BA (1973) A new isoflavone from soya beans. Phytochemistry 12:169–170

    Article  CAS  Google Scholar 

  • Naim M, Gestetner B, Zilkah S, Birk Y, Bondi A (1974) Soybean isoflavones: characterization, determination, and antifungal activity. J Agric Food Chem 22:806–810

    Article  CAS  PubMed  Google Scholar 

  • Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun 157:183–189

    Article  CAS  PubMed  Google Scholar 

  • Park E, Lee SM, Jung IK, Lim Y, Kim JH (2011) Effects of genistein on early-stage cutaneous wound healing. Biochem Biophys Res Commun 410:514–519

    Article  CAS  PubMed  Google Scholar 

  • Patriarca MT, Moraes ARB, Nader HB, Petri V, Martins JRM, Gomes RCT, Junior JMS (2013) Hyaluronic acid concentration in postmenopausal facial skin after topical estradiol and genistein treatment: a double-blind, randomized clinical trial of efficacy. Menopause 20:336–341

    PubMed  Google Scholar 

  • Perkin AG, Newbury FG (1899) The colouring matters contained in dyer’s broomn (Genista tinctoria) and heather (Calluna vulgaris). J Chem Soc 75:830–839

    Article  CAS  Google Scholar 

  • Phommalth S, Jeong Y-S, Kim Y-H, Hwang Y-H (2008) Isoflavone composition within each structural part of soybean seeds and sprouts. J Crop Sci Biotechnol 11:57–62

    Google Scholar 

  • Pinnel SR (2003) Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J Am Acad Dermatol 2003(48):1–19

    Article  Google Scholar 

  • Rostagno MA, Araújo JMA, Sandi D (2002) Supercritical fluid extraction of isoflavones from soybean flour. Food Chem 78:111–117

    Article  CAS  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2003) Ultrasound-assited extraction of soy isoflavones. J Chromatogr A 1012:119–128

    Article  CAS  PubMed  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2004) Pressurized liquid extraction of soy isoflavones. Anal Chim Acta 522:169–177

    Article  CAS  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2007) Microwave assisted extraction of soy isoflavones. Anal Chim Acta 588:274–282

    Article  CAS  PubMed  Google Scholar 

  • Rostagno MA, Villares A, Guillamón E, Gárcia-Lafuente A, Martinéz JA (2009) Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A 1216:2–29

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Calvo JM, Rodríguez-Iglesias MA, Molinillo JMG, Macías FA (2013) Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers. Phytochem Rev 12:979–1000

    Article  CAS  Google Scholar 

  • Sansone F, Picerno P, Mencherini T, Russo P, Gasparri F, Giannini V, Lauro MR, Puglisi G, Aquino RP (2013) Enhanced technological and permeation properties of a microencapsulated soy isoflavones extract. J Food Eng 115:298–305

    Article  CAS  Google Scholar 

  • Sator PG, Schmidt JB, Rabe T, Zouboulis CC (2004) Skin aging and sex hormones in women—clinical perspectives for intervention by hormone replacement therapy. Exp Dermatol 13:36–40

    Article  CAS  PubMed  Google Scholar 

  • Schmid D, Zulli F (2002) Topically applied soy isoflavones increase skin thickness. Cosmet Toilet 117:45–50

    CAS  Google Scholar 

  • Schmid D, Zulli F, Nissen HP, Prieur H (2003) Penetration and metabolism of isoflavones in human skin. Cosmet Toilet 118:71–74

    CAS  Google Scholar 

  • Schwartz H, Sontag G (2009) Comparison of sample preparation techniques for analysis of isoflavones in foodstuffs. Anal Chim Acta 633:204–215

    Article  CAS  PubMed  Google Scholar 

  • Seidel V (2006) Initial and bulk extraction. In: Sarker SD, Latif Z, Gray AI (eds) Natural products isolation, vol 20. Humana Press Inc, Totowa, pp 27–46

    Chapter  Google Scholar 

  • Setchell KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S–1343S

    CAS  PubMed  Google Scholar 

  • Shao S, Duncan AM, Yang R, Marcone MF, Rajcan I, Tsao R (2011) Systematic evaluation of pre-HPLC sample processing techniques on total and individual isoflavones in soybeans and soy products. Food Res Int 44:2425–2434

    Article  CAS  Google Scholar 

  • Silva APC, Nunes BR, De Oliveira MC, Koester LS, Mayorga P, Bassani VL, Teixeira HF (2009) Development of topical nanoemulsions containing the isoflavone genistein. Pharmazie 64:32–35

    CAS  PubMed  Google Scholar 

  • Song TT, Hendrich S, Murphy PA (1999) Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem 47:1607–1610

    Article  CAS  PubMed  Google Scholar 

  • Song X, Xue Y, Wang Q, Wu X (2011) Comparison of three thermostable β-Glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J Agric Food Chem 59:1954–1961

    Article  CAS  PubMed  Google Scholar 

  • Sovová H, Stateva PR (2011) Supercritical fluid extraction from vegetable materials. Rev Chem Eng 27:79–156

    Article  CAS  Google Scholar 

  • Stancanelli R, Mazzaglia A, Tommasini S, Calabrò ML, Villari V, Guardo M, Ficarra P, Ficarra R (2007) The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: a spectroscopic investigation with implications in the pharmaceutical analysis. J Pharm Biomed Anal 44:980–984

    Article  CAS  PubMed  Google Scholar 

  • Sudel KM, Venzke K, Mielke H, Breitenbach U, Mundt C, Jaspers S, Koop U, Sauermann K, KnuBmann-Hartig E, Moll I, Gercken G, Young AR, Stab F, Wenck H, Gallinat S (2005) Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract. Photochem Photobiol 81:581–587

    Article  PubMed  Google Scholar 

  • Sun Y, Zhang Y, Liu N, Li D, Li M (2010) Hydrolysis of genistin and daidzin by a β-glucosidase purified from Lentinula edodes. J Med Plants Res 4:2684–2690

    CAS  Google Scholar 

  • Thorne JH (1981) Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Plant Physiol 67:1016–1025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tipkanon S, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Prinyawiwatkul W, Xu Z (2010) Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour. J Agric Food Chem 58:11340–11345

    Article  CAS  PubMed  Google Scholar 

  • Utkina EA, Antoshina SV, Selishcheva A, Sorokoumova GM, Rogozhkina EA, Shvets VI (2004) Isoflavones daidzein and genistein: preparation by acid hydrolysis of their glycosides and the effect on phospholipid peroxidation. Bioorg Khim 30:429–435

    CAS  PubMed  Google Scholar 

  • Vacek J, Klejdus B, Lojkova L, Kuban V (2008) Current trends in isolation, separation, determination and identification of isoflavones: a review. J Sep Sci 31:2054–2067

    Article  CAS  PubMed  Google Scholar 

  • Varani J, Kelley EA, Perone P, Lateef H (2004) Retinoid-induced epidermal hyperplasia in human skin organ culture: inhibition with soy extract and soy isoflavones. Exp Mol Pathol 77:176–183

    Article  CAS  PubMed  Google Scholar 

  • Vargas BA, Bidone J, Oliveira LK, Koester LS, Bassani VL, Teixeira HF (2012) Development of topical hydrogels containing genistein-loaded nanoemulsions. J Biomed Nanotechnol 8:1–7

    Article  CAS  Google Scholar 

  • Walter ED (1941) Genistin (an Isoflavone glucoside) and its aglucone, genistein, from soybeans. J Am Chem Soc 63:3273–3276

    Article  CAS  Google Scholar 

  • Walz E (1931) Isoflavon and saponin-glucoside in soja hispida. Justus Liebigs Ann Chem 489:118–155

    Article  CAS  Google Scholar 

  • Wang HZ, Zhang Y, Xie LP, Yu XY, Zhang RQ (2002) Effects of genistein and daidzein on the cell growth, cell cycle, and differentiation of human and murine melanoma cells. J Nutr Biochem 13:421–426

    Article  PubMed  Google Scholar 

  • Wang J, Sun AL, Liu RM, Zhang YQ (2013a) Isolation and purification of soy isoflavones from soybean extracts by adsorption chromatography on 12% cross-linked agarose gel media. J Liq Chromatogr Relat Technol 36:2307–2316

    CAS  Google Scholar 

  • Wang M, Guo J, Qi W, Su R, He Z (2013b) An effective and green method for the extraction and purification of aglycone isoflavones from soybean. Food Sci Biotechnol 22:705–712

    Article  Google Scholar 

  • Wei H, Wei L, Frenkel K, Bowen R, Barnes S (1993) Inhibition of tumor promoter-induced hydrogen peroxide production in vitro and in vivo by genistein. Nutr Cancer 20:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Bowen R, Cai Q, Barnes S, Wang Y (1995a) Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 208:124–130

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Barnes S, Wang Y (1995b) The inhibition of tumor promoter-induced proto-oncogene expression mouse skin by soybean isoflavone genistein. Oncol Rep 3:125–128

    Google Scholar 

  • Wei H, Bowen R, Zhang X, Lebwohl M (1998) Isoflavone genistein inhibits the initiation and promotion of two-stage skin carcinogenesis. Carcinogenesis 19:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Zhang X, Wang Y, Lebw M (2002) Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett 185:21–29

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Saladari R, Lu Y, Wang Y, Palep SR, Moore J, Phelps R, Shyong E, Lebwohl MG (2003) Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr 133:3811S–3819S

    CAS  PubMed  Google Scholar 

  • Weiss SC (2011) Conventional topical delivery systems. Dermatol Ther 24:471–476

    Article  PubMed  Google Scholar 

  • Wijngaard H, Hossain MB, Rai DK, Brunton N (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46:505–513

    Article  CAS  Google Scholar 

  • Xavier CR, Silva APC, Schwingel LC, Borghetti GS, Koester LS, Mayorga P, Teixeira HF, Bassani VL (2010) Improvement of genistein content in solid genistein/β-cyclodextrin complexes. Quim Nova 33:587–590

    Article  CAS  Google Scholar 

  • Xu L, Lamb K, Layton L, Kumar A (2004) A membrane-based process for recovering isoflavones from a waste stream of soy processing. Food Res Int 37:867–874

    Article  CAS  Google Scholar 

  • Yang F, Ma Y, Ito Y (2001) Separation and purification of isoflavones from a crude soybean extract by high-speed counter-current chromatography. J Chromatogr A 928:163–170

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang L, Yan Q, Jiang Z, Li L (2009) Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem 115:1247–1252

    Article  CAS  Google Scholar 

  • Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL (2013) Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr Polym 98:726–735

    Article  CAS  PubMed  Google Scholar 

  • Yeom SJ, Kim BN, Kim YS, Oh DK (2012) Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J Agric Food Chem 60:1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Yuan JP, Liu YB, Peng J, Wang JH, Liu X (2009) Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination. J Agric Food Chem 57:9002–9010

    Article  CAS  PubMed  Google Scholar 

  • Zampieri ALTC, Ferreira FS, Resende ÉC, Gaeti MPN, Diniz DGA, Taveira SF, Lima EM (2013) Biodegradable polymeric nanocapsules based on poly(DL-lactide) for genistein topical delivery: obtention, characterization and skin permeation studies. J Biomed Nanotechnol 9:527–534

    Article  CAS  PubMed  Google Scholar 

  • Zhang EJ, Ng KM, Luo KQ (2007) Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. J Agric Food Chem 55:6940–6950

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang Y, Su Y, Zhang H, Ding L, Yan X, Zhao D, Shao N, Ye X, Cheng Y (2011) Inclusion complexes of isoflavones with two commercially available dendrimers: solubility, stability, structures, delivery behaviors, cytotoxicity, and antioxidant activities. Int J Pharm 421:301–309

    Article  CAS  PubMed  Google Scholar 

  • Zuanazzi JAS, Mayorga P (2010) Fitoprodutos e desenvolvimento econômico. Quim Nova 33:1421–1428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES)—Rede Nanobiotec-Brasil (grant agreement nº 902/2009) and State Foundation for Research Support (FAPERGS)—PRONEM (Grant Agreement No. 11/2206-7). M.C.N. wishes to thank CAPES for her scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder Ferreira Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemitz, M.C., Moraes, R.C., Koester, L.S. et al. Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem Rev 14, 849–869 (2015). https://doi.org/10.1007/s11101-014-9382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9382-0

Keywords

Navigation