Skip to main content

Advertisement

Log in

Alkali tolerance in rice (Oryza sativa L.): growth, photosynthesis, nitrogen metabolism, and ion homeostasis

  • Original Papers
  • Published:
Photosynthetica

Abstract

Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3 , and H2PO4 ) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4 + production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKT:

low affinity K+ transporter

AS:

asparagine synthetase

AST:

alkali stress treatment

GDH:

glutamate dehydrogenase

GOGAT:

glutamate synthase

GS:

glutamine synthetase

HAK:

KUP/HAK/KT K+ transporter

HKT:

high affinity K+ transporter

NHX:

Na+/H+ exchanger

NiR:

nitrite reductase

NR:

nitrate reductase

OA:

organic acid

P5CS:

δ1-pyrroline-5-carboxylate synthetase

ProDH:

proline dehydrogenase

SC:

alkali-sensitive cultivar

SOS:

salt overly sensitive

SST:

salt stress treatment

TC:

alkali-tolerant cultivar

References

  • Chen W., Cui P., Sun H. et al.: Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). — Ind. Crop Prod. 30: 351–358, 2009.

    Article  Google Scholar 

  • Comas L.H., Eissenstat D.M., Lakso A.N.: Assessing root death and root system dynamics in a study of grape canopy pruning. — New Phytol. 147: 171–178, 2000.

    Article  CAS  Google Scholar 

  • Crawford N.M., Glass A.D.M.: Molecular and physiological aspects of nitrate uptake in plants. — Trends Plant Sci. 3: 389–395, 1998.

    Article  Google Scholar 

  • Gao C., Wang Y., Liu G. et al.: Expression profiling of salinityalkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. — Plant Mol. Biol. 66: 245–258, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Horie T., Hauser F., Schroeder J.I.: HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. — Trends Plant Sci. 14: 660–668, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain M., Nijhawan A., Tyagi A.K., Khurana J.P.: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. — Biochem. Biophys. Res. Commun. 345: 646–651, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kant S., Bi Y.M., Rothstein S.J.: Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. — J. Exp. Bot. 62: 1499–1509, 2010.

    Article  PubMed  Google Scholar 

  • Kawanabe S., Zhu T.: Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. — J. Japan. Grassl. Sci. 39: 91–99, 1991.

    Google Scholar 

  • Kusano M., Tabuchi M., Fukushima A. et al.: Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice. — Plant J. 66: 456–466, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Läuchli A., Lüttge U.: Salinity in the soil environment. — In: Tanji K.K. (ed.): Salinity: Environment-Plants-Molecules. Pp. 21–23. Kluwer Academic Publ., Boston 2002.

    Google Scholar 

  • Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta (CT)) Method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lutts S., Kinet J., Bouharmont J.: NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. — Ann Bot. 78: 389–398, 1996.

    Article  CAS  Google Scholar 

  • Martinez-Atienza J., Jiang X., Garciadeblas B. et al.: Conservation of the salt overly sensitive pathway in rice. — Plant Physiol. 143: 1001–1012, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Quinet M., Ndayiragije A., Lefèvre I. et al.: Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. — J. Exp. Bot. 61: 2719–2733, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi D., Sheng Y.: Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. — Environ. Exp. Bot. 54: 8–21, 2005.

    Article  CAS  Google Scholar 

  • Shi D., Wang D.: Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. — Plant Soil 271: 15–26, 2005.

    Article  CAS  Google Scholar 

  • Shi D., Yin L.: Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Pucinellia tenuiflora (Griseb.) Scribn. et Merr. plants. — Acta Bot. Sin. 35: 144–149, 1993.

    CAS  Google Scholar 

  • Shi H., Quintero F.J., Pardo J.M., Zhu J.K.: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. — Plant Cell 14: 465–477, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Touraine B., Grignon N., Grignon C.: Charge balance in NO3--fed soybean: Estimation of K+ and carboxylate recirculation. — Plant Physiol. 88: 605–612, 1998.

    Article  Google Scholar 

  • Wang H., Han J., Wu Z. et al.: Alteration of nitrogen metabolism in rice variety ‘Nipponbare’ induced by alkali stress. — Plant Soil 355: 131–147, 2012.

  • Wang H., Wu Z., Chen Y. et al.: Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). — Plant Soil Environ. 57: 286–294, 2011.

    Google Scholar 

  • Wang X.L.: Carboxylic acid. — In: Wang X.L. (ed.): Organic Chemistry. Pp. 149–150. Higher Education Press, Beijing 2001.

    Google Scholar 

  • Yang C., Chong J., Li C. et al.: Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. — Plant Soil 294: 263–276, 2007.

    Article  CAS  Google Scholar 

  • Yang C., Xu H., Wang L. et al.: Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. — Photosynthetica 47: 79–86, 2009.

    Article  CAS  Google Scholar 

  • Yang F., Liang Z., Wang Z.: [Effect of soda saline-sodic stress on the panicle traits and yield components of rice variety Changbai 9.] — North. China Agron. J. 25: 59–61, 2010. In Chinese]

    Google Scholar 

  • Zang A., Xu X., Neill S., Cai W.: Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. — J. Exp. Bot. 61: 777–789, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z.: Laboratory Manual of Plant Physiology. Higher Education Press, Beijing 2004.

    Google Scholar 

  • Zhu J.K.: Regulation of ion homeostasis under salt stress. — Curr. Opin. Plant Biol. 6: 441–445, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Additional information

Acknowledgements: This study was supported by the National Natural Science Foundation of China Project (31300192), Project of the Jilin Provincial Government (No. 20106023), and Basic Research Project by Jilin Provincial Government (No. 20090567). We thank International Science Editing (ISE) for language editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lin, X., Cao, S. et al. Alkali tolerance in rice (Oryza sativa L.): growth, photosynthesis, nitrogen metabolism, and ion homeostasis. Photosynthetica 53, 55–65 (2015). https://doi.org/10.1007/s11099-015-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0079-4

Additional key words

Navigation