Skip to main content

Advertisement

Log in

How passive is passive listening? Toward a sensorimotor theory of auditory perception

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

According to sensorimotor theory perceiving is a bodily skill involving exercise of an implicit know-how of the systematic ways that sensations change as a result of potential movements, that is, of sensorimotor contingencies. The theory has been most successfully applied to vision and touch, while perceptual modalities that rely less on overt exploration of the environment have not received as much attention. In addition, most research has focused on philosophically grounding the theory and on psychologically elucidating sensorimotor laws, but the theory’s ramifications for neuroscience still remain underexamined. Here we sketch the beginnings of a research program that could address these two outstanding challenges in terms of auditory perception. We review the neuroscience literature on passive listening, which is defined as listening without overt bodily movement, and conclude that sensorimotor theory provides a unique perspective on the consistent finding of motor system activation. In contrast to competing theories, this activation is predicted to be involved not only in the perception of speech- and action-related sounds, but in auditory perception in general. More specifically, we propose that the auditory processing associated with supplementary motor areas forms part of the neural basis of the exercise of sensorimotor know-how: these areas’ recognized role in (1) facilitating spontaneous motor responses to sound and (2) supporting flexible engagement of sensorimotor processes to guide auditory experience and enable auditory imagery, can be understood in terms of two key characteristics of sensorimotor interaction, its (1) “alerting capacity” (or “grabbiness”) and (2) “corporality” (or “bodiliness”), respectively. We also highlight that there is more to the inside of the body than the brain: there is an opportunity to develop sensorimotor theory into new directions in terms of the still poorly understood active processes of the peripheral auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case of vision this potential access can be interpreted as a saccade followed by fixation on the relevant visual detail. However, this is not the full story as change blindness can also occur when the eye is directly fixating the change at the moment it occurs, suggesting that “you do not always see where we look” (O’Regan et al. 2000: 201). In other words, it is important to keep in mind that accessing detail with the eyes is not sufficient in itself for visual awareness, which additionally requires attention.

  2. In this more general formulation, motor resonance theory has substantial overlap with other important theories in addition to the motor theory of speech perception, such as grounded cognition (Barsalou 2008), common coding theory and ideomotor theory (Hommel et al. 2001), as well as motor imagery (Decety et al. 1994) and emulation theory (Grush 2004).

  3. Note that this passive listening paradigm not only differs from the active listening paradigm, which is based on tasks requiring a motor response, but also from passive listening in the context of auditory selective attention task, in which passive listening is contrasted with “active” or “attentive” listening (Toro et al. 2005).

  4. Note that we are not committed to claiming that these particular areas per se are necessary for the exercise of sensorimotor mastery. What is required are specific kinds of neural activity patterns that emerge in response to sensory stimuli (Luczak et al. 2009), and presumably these complex patterns tend to be more easily realized with the help of these areas because they acquired a particularly suitable neural connectivity.

  5. To be fair, it is possible to model this sensorimotor engagement in counterfactual terms, namely in terms of internal models that predict the sensory consequences of potential movements (Seth 2014). However, this kind of approach sits uneasily with sensorimotor theory’s avoidance of appealing to internal representations (Flament-Fultot 2016; Froese 2014; Silverman 2018).

References

  • Aglioti, S. M., & Pazzaglia, M. (2010). Representing actions through their sound. Experimental Brain Research, 206, 141–151.

    Google Scholar 

  • Aglioti, S. M., & Pazzaglia, M. (2011). Sounds and scents in (social) action. Trends in Cognitive Sciences, 15(2), 47–55.

    Google Scholar 

  • Aizawa, K. (2019). Is perceiving bodily action? Phenomenology and the Cognitive Sciences. https://doi.org/10.1007/s11097-018-9592-9.

  • Alaerts, K., Swinnen, S. P., & Wenderoth, N. (2009). Interaction of sound and sight during action perception: evidence for shared modality-dependent action representations. Neuropsychologia, 47(12), 2593–2599.

    Google Scholar 

  • Andéol, G., Guillaume, A., Micheyl, C., Savel, S., Pellieux, L., & Moulin, A. (2011). Auditory efferents facilitate sound localization in noise in humans. The Journal of Neuroscience, 31(18), 6759–6763.

    Google Scholar 

  • Aytekin, M., Moss, C. F., & Simon, J. Z. (2008). A sensorimotor approach to sound localization. Neural Computation, 20, 603–635.

    Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., Heinze, H. J., & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30(3), 917–926.

    Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Google Scholar 

  • Beaton, M. (2013). Phenomenology and embodied action. Constructivist Foundations, 8(3), 298–313.

    Google Scholar 

  • Beaton, M. (2016). Sensorimotor direct realism: how we enact our world. Constructivist Foundations, 11(2), 265–297.

    Google Scholar 

  • Bidelman, G. M., Nelms, C., & Bhagat, S. P. (2016). Musical experience sharpens human cochlear tuning. Hearing Research, 335, 40–46.

    Google Scholar 

  • Bidelman, G. M., Schneider, A. D., Heitzmann, V. R., & Bhagat, S. P. (2017). Musicianship enhances ipsilateral and contralateral efferent gain control to the cochlea. Hearing Research, 344, 275–283.

    Google Scholar 

  • Bishop, J. M., & Martin, A. O. (2014). Contemporary sensorimotor theory: a brief introduction. In J. M. Bishop & A. O. Martin (Eds.), Contemporary sensorimotor theory (pp. 1–22). Switzerland: Springer.

    Google Scholar 

  • Borg, E., & Counter, S. A. (1989). The middle-ear muscles. Scientific American, 261(2), 74–81.

    Google Scholar 

  • Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L., & Rauschecker, J. P. (2015). Neurobiological roots of language in primate audition: common computational properties. Trends in Cognitive Sciences, 19(3), 142–150.

    Google Scholar 

  • Brefczynski-Lewis, J. A., & Lewis, J. W. (2017). Auditory object perception: a neurobiological model and prospective review. Neuropsychologia, 105, 223–242.

    Google Scholar 

  • Bruineberg, J., Chemero, A., & Rietveld, E. (2019). General ecological information supports engagement with affordances for ‘higher’ cognition. Synthese. https://doi.org/10.1007/s11229-018-1716-9.

  • Buccino, G., Riggio, L., Melli, G., Binkosfki, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modualtes the activity of the motor system: a combined TMS and behavioral study. Cognitive Brain Research, 24, 355–363.

    Google Scholar 

  • Camalet, S., Duke, T., Jülicher, F., & Prost, J. (2000). Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proceedings of the National Academy of Sciences of the USA, 97(7), 3183–3188.

    Google Scholar 

  • Caramazza, A., Anzellotti, S., Strnad, L., & Lingnau, A. (2014). Embodied cognition and mirror neurons: a critical assessment. Annual Review of Neuroscience, 37, 1–15.

    Google Scholar 

  • Chabris, C. F., & Simons, D. J. (2010). The invisible Gorilla: and other ways our intuition deceives us. London: Harper Collins.

    Google Scholar 

  • Chemero, A. (2016). Sensorimotor empathy. Journal of Consciousness Studies, 23(5–6), 138–152.

    Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.

    Google Scholar 

  • Cohen, B. H., Davidson, R. J., Senulis, J. A., Saron, C. D., & Weisman, D. R. (1992). Muscle tension patterns during auditory attention. Biological Psychology, 33(2–3), 133–156.

    Google Scholar 

  • Cook, R., Bird, G., Catmur, C., & Press, C. (2014). Mirror neurons: from origin to function. Behavioral and Brain Sciences, 37(2), 177–192.

    Google Scholar 

  • Cooke, E., & Myin, E. (2011). Is trilled smell possible? How the structure of olfaction determines the phenomenology of smell. Journal of Consciousness Studies, 18(11–12), 59–95.

    Google Scholar 

  • Cullen, K. E., & Roy, J. E. (2004). Signal processing in the vestibular system during active versus passive head movements. Journal of Neurophysiology, 91(5), 1919–1933.

    Google Scholar 

  • D’Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955–958.

    Google Scholar 

  • D’Ausilio, A., Pulvermüller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19, 381–385.

    Google Scholar 

  • D’Ausilio, A., Maffongelli, L., Bartoli, E., Campanella, M., Ferrari, E., Berry, J., & Fadiga, L. (2014). Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1644), 20130418. https://doi.org/10.1098/rstb.2013.0418.

    Article  Google Scholar 

  • Dalton, P., & Fraenkel, N. (2012). Gorillas we have missed: sustained inattentional deafness for dynamic events. Cognition, 124, 367–372.

    Google Scholar 

  • Dannenbring, G. L. (1976). Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30(2), 99–114.

    Google Scholar 

  • De Lucia, M., Camen, C., Clarke, S., & Murray, M. M. (2009). The role of actions in auditory object discrimination. Neuroimage, 48(2), 475–485.

    Google Scholar 

  • Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J. C., & Fazio, F. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.

    Google Scholar 

  • Degenaar, J., & O'Regan, J. K. (2015). Sensorimotor theory of consciousness. Scholarpedia, 10(5), 4952.

    Google Scholar 

  • Degenaar, J., & O'Regan, J. K. (2017). Sensorimotor theory and enactivism. Topoi, 36, 393–407. https://doi.org/10.1007/s11245-015-9338-z.

    Article  Google Scholar 

  • Di Paolo, E. A., & De Jaegher, H. (2012). The interactive brain hypothesis. Frontiers in Human Neuroscience, 6(163). https://doi.org/10.3389/fnhum.2012.00163.

  • Di Paolo, E. A., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor life: An enactive proposal. Oxford: Oxford University Press.

    Google Scholar 

  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176–180.

    Google Scholar 

  • Dreyer, F. R., Frey, D., Arana, S., von Saldern, S., Picht, T., Vajkoczy, P., & Pulvermüller, F. (2015). Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Frontiers in Psychology, 6(1661). https://doi.org/10.3389/fpsyg.2015.01661.

  • Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proceedings of the National Academy of Sciences of the USA, 111(19), 7126–7131.

    Google Scholar 

  • Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2016). Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nature Communications, 7(12241). https://doi.org/10.1038/ncomms12241.

  • Engel, L. R., Frum, C., Puce, A., Walker, N. A., & Lewis, J. W. (2009). Different categories of living and non-living sound-sources activate distinct cortical networks. Neuroimage, 47, 1778–1791.

    Google Scholar 

  • Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excibtability of tongue muscles: a TMS study. European Journal of Neuroscience, 15(2), 399–402.

    Google Scholar 

  • Flament-Fultot, M. (2016). Counterfactuals versus constraints: towards an implementation theory of sensorimotor mastery. Journal of Consciousness Studies, 23(5–6), 153–176.

    Google Scholar 

  • Foglia, L., & O’Regan, J. K. (2016). A new imagery debate: Enactive and sensorimotor accounts. Review of Philosophy and Psychology, 7, 181–196.

    Google Scholar 

  • Fowler, C. A., & Xie, X. (2016). Involvement of the speech motor system in speech perception. In P. van Lieshout, B. Maassen, & H. Terband (Eds.), Speech motor control in Normal and disordered speech: Future developments in theory and methodology (pp. 1–24). Rockville: ASHA Press.

    Google Scholar 

  • Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P., Spencer, S. S., & Spencer, D. D. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. The Journal of Neuroscience, 11(11), 3656–3666.

    Google Scholar 

  • Froese, T. (2014). Steps toward an enactive account of synesthesia. Cognitive Neuroscience, 5(2), 126–127.

    Google Scholar 

  • Froese, T. (2018). Searching for the conditions of genuine intersubjectivity: From agent-based models to perceptual crossing experiments. In A. Newen, L. De Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 163–186). Oxford: Oxford University Press.

    Google Scholar 

  • Froese, T., & Ziemke, T. (2009). Enactive artificial intelligence: investigating the systemic organization of life and mind. Artificial Intelligence, 173(3–4), 366–500.

    Google Scholar 

  • Fuchs, T. (2018). Ecology of the brain: The phenomenology and biology of the embodied mind. Oxford: Oxford University Press.

    Google Scholar 

  • Fujiwara, K., Tomita, H., Maeda, K., & Kunita, K. (2009). Effects of neck flexion on contingent negative variation and anticipatory postural control during arm movement while standing. Journal of Electromyography and Kinesiology, 19, 113–121.

    Google Scholar 

  • Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377.

    Google Scholar 

  • Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., & Pizzamiglio, L. (2008). A selective representation of the meaning of actions in the auditory mirror system. Neuroimage, 40, 1274–1286.

    Google Scholar 

  • Gallagher, S. (2007). Simulation trouble. Social Neuroscience, 2(3), 353–365.

    Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.

    Google Scholar 

  • Gallese, V., & Sinigaglia, C. (2018). Embodied resonance. In A. Newen, L. De Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 417–432). Oxford: Oxford University Press.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609.

    Google Scholar 

  • Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16, 1824–1829.

    Google Scholar 

  • Gdowski, G. T., & McCrea, R. A. (1999). Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation. Journal of Neurophysiology, 82(1), 436–449.

    Google Scholar 

  • Gilchrist, I. D., Brown, V., & Findlay, J. M. (1997). Saccades without eye movements. Nature, 390, 130–131.

    Google Scholar 

  • Gordon, C. L., Cobb, P. R., & Balasubramaniam, R. (2018a). Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data. PLoS One, 13(11), e0207213. https://doi.org/10.1371/journal.pone.0207213.

    Article  Google Scholar 

  • Gordon, C. L., Iacoboni, M., & Balasubramaniam, R. (2018b). Multimodal music perception engages motor prediction: a TMS study. Frontiers in Neuroscience, 12(736). https://doi.org/10.3389/fnins.2018.00736.

  • Graziano, M. (2006). The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience, 29, 105–134.

    Google Scholar 

  • Grush, R. (2004). The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396.

    Google Scholar 

  • Gruters, K. G., Murphy, D. L. K., Jenson, C. D., Smith, D. W., Shera, C. A., & Groh, J. M. (2018). The eardrums move when the eyes move: a multisensory effect on the mechanics of hearing. Proceedings of the National Academy of Sciences of the USA, 115(6), E1309–E1318.

    Google Scholar 

  • Guinan, J. J. (2010). Cochlear efferent innervation and function. Current Opinion in Otolaryngology & Head and Neck Surgery, 18(5), 447–453.

    Google Scholar 

  • Hauk, O., Shtyrov, Y., & Pulvermüller, F. (2006). The sound of actions as reflected by mismatch negativity: rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements. European Journal of Neuroscience, 23(3), 811–821.

    Google Scholar 

  • Heidegger, M. ([1927] 1996). Being and Time (J. Stambaugh, Trans.). Albany: State University of New York Press.

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.

    Google Scholar 

  • Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69(3), 407–422.

    Google Scholar 

  • Hofman, P. M., Van Riswick, J. G. A., & van Opstal, A. J. (1998). Relearning sound localization with new ears. Nature Neuroscience, 1(5), 417–421.

    Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.

    Google Scholar 

  • Hove, M. J., Stelzer, J., Nierhaus, T., Thiel, S. D., Gundlach, C., Margulies, D. S., van Dijk, K. R. A., Turner, R., Keller, P. E., & Merker, B. (2016). Brain network reconfiguration and perceptual decoupling during an absorptive state of consciousness. Cerebral Cortex, 26(7), 3116–31124.

    Google Scholar 

  • Hurley, S., & Noë, A. (2003). Neural plasticity and consciousness. Biology and Philosophy, 18, 131–168.

    Google Scholar 

  • Husserl, E. (1966). Zur Phänomenologie des inneren Zeitbewusstseins (1893–1917). Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Hutto, D. D. (2015). Overly enactive imagination? Radically re-imagining imagining. The Southern Journal of Philosophy, 53(Spindel Supplement), 68–89.

    Google Scholar 

  • Hutto, D. D., & Myin, E. (2013). Radicalizing Enactivism: Basic minds without content. Cambridge: The MIT Press.

    Google Scholar 

  • Isel, F. (2001). How do we account for the absence of “change deafness”? Behavioral and Brain Sciences, 24(5), 988.

    Google Scholar 

  • Kemp, D. T. (2008). Otoacoustic emissions: Concepts and origins. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active processes and Otoacoustic emissions in hearing (pp. 1–38). New York: Springer.

    Google Scholar 

  • Keysers, C., Kohler, E., Umiltà, M. A., Nanetti, L., Fogassi, L., & Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153(4), 628–636.

    Google Scholar 

  • Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.

    Google Scholar 

  • Kirchhoff, M. (2018). Predictive processing, perceiving and imagining: is to perceive to imagine, or something close to it? Philosophical Studies, 175, 751–767.

    Google Scholar 

  • Kirchhoff, M. D., & Froese, T. (2017). Where there is life there is mind: in support of a strong life-mind continuity thesis. Entropy, 19(4), 169. https://doi.org/10.3390/e1904016.

    Article  Google Scholar 

  • Kiverstein, J. (2015). Empathy and the responsiveness to social affordances. Consciousness and Cognition, 36, 532–542.

    Google Scholar 

  • Koelsch, S. (2011). Toward a neural basis of music perception - a review and updated model. Frontiers in Psychology, 2(110). https://doi.org/10.3389/fpsyg.2011.00110.

  • Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297, 846–848.

    Google Scholar 

  • Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory-motor interactions in musical training. Annals of the New York Academy of Sciences, 1060(1), 189–194.

    Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. The Journal of Neuroscience, 27(2), 308–314.

    Google Scholar 

  • Lahav, A., Katz, T., Chess, R., & Saltzman, E. (2013). Improved motor sequence retention by motionless listening. Psychological Research, 77(3), 310–319.

    Google Scholar 

  • Langers, D. R., & Melcher, J. R. (2011). Hearing without listening: functional connectivity reveals the engagement of multiple nonauditory networks during basic sound processing. Brain Connectivity, 1(3), 233–244.

    Google Scholar 

  • Lanzilotto, M., Perciavalle, V., & Lucchetti, C. (2013). Auditory and visual systems organization in Brodmann Area 8 for gaze-shift control: where we do not see, we can hear. Frontiers in Behavioral Neuroscience, 7(198). https://doi.org/10.3389/fnbeh.2013.00198.

  • Lepage, J.-F., Tremblay, S., Nguyen, D. K., Champoux, F., Lassonde, M., & Théoret, H. (2010). Action related sounds induce early and late modulations of motor cortex activity. NeuroReport, 21, 250–253.

    Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.

    Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of speech code. Psychological Review, 74, 431–461.

    Google Scholar 

  • Lima, C. F., Krishnan, S., & Scott, S. K. (2016). Roles of supplementary motor areas in auditory processing and auditory imagery. Trends in Neurosciences, 39(8), 527–542.

    Google Scholar 

  • Luczak, A., Barthó, P., & Harris, K. D. (2009). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62, 413–425.

    Google Scholar 

  • Luo, C., Guo, Z. W., Lai, Y. X., Liao, W., Liu, Q., Kendrick, K. M., Yao, D. Z., & Li, H. (2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PLoS One, 7(5), e36568. https://doi.org/10.1371/journal.pone.0036568.

    Article  Google Scholar 

  • Lyon, C. (2014). Beyond vision: Extending the scope of a sensorimotor account of perception. In J. M. Bishop & A. O. Martin (Eds.), Contemporary sensorimotor theory (pp. 127–136). Switzerland: Springer.

    Google Scholar 

  • Manley, G. A., Fay, R. R., & Popper, A. N. (Eds.). (2008). Active processes and Otoacoustic emissions in hearing. New York: Springer.

    Google Scholar 

  • Maoiléidigh, D. Ó., & Ricci, A. J. (2019). A bundle of mechanisms: Inner-ear hair-cell mechanotransduction. Trends in Neurosciences, 42(3), 221–236.

    Google Scholar 

  • Martin, P. (2008). Active hair-bundle motility of the hair cells of vestibular and auditory organs. In G. A. Manley, R. R. Fay, & A. N. Popper (Eds.), Active processes and Otoacoustic emissions in hearing (pp. 93–143). New York: Springer.

    Google Scholar 

  • Mathias, B., Palmer, C., Perrin, F., & Tillmann, B. (2015). Sensorimotor learning enhances expectations during auditory perception. Cerebral Cortex, 25(8), 2238–2254.

    Google Scholar 

  • Mcdonald, J. S. P., & Lavie, N. (2011). Visual perceptual load induces inattentional deafness. Attention, Perception, & Psychophysics, 73(6), 1780–1789.

    Google Scholar 

  • McGann, M., & De Jaegher, H. (2009). Self-other contingencies: enacting social perception. Phenomenology and the Cognitive Sciences, 8(4), 417–437.

    Google Scholar 

  • Meister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003). Motor cortex hand area and speech: Implications for the development of language. Neuropsychologia, 41(4), 401–406.

    Google Scholar 

  • Molloy, K., Griffiths, T. D., Chait, M., & Lavie, N. (2015). Inattentional deafness: visual load leads to time-specific suppression of auditory evoked responses. The Journal of Neuroscience, 35(49), 16046–16054.

    Google Scholar 

  • Moray, N. (1959). Attention in dichotic listening: affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11(1), 56–60.

    Google Scholar 

  • Möttönen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. The Journal of Neuroscience, 29(31), 9819–9825.

    Google Scholar 

  • Myin, E. (2016). Perception as something we do. Journal of Consciousness Studies, 23(5–6), 80–104.

    Google Scholar 

  • Naumann, M., Magyar-Lehmann, S., Reiners, K., Erbguth, F., & Leenders, K. L. (2000). Sensory tricks in cervical dystonia: Perceptual dysbalance of parietal cortex modulates frontal motor programming. Annals of Neurology, 47, 322–328.

    Google Scholar 

  • Noë, A. (2002). Is the visual world a grand illusion? Journal of Consciousness Studies, 9(5–6), 1–12.

    Google Scholar 

  • Noë, A. (2004). Action in perception. Cambridge: The MIT Press.

    Google Scholar 

  • Noë, A. (2009). Out of our heads: Why you are not your brain, and other lessons from the biology of consciousness. New York: Hill and Wang.

    Google Scholar 

  • O’Regan, J. K. (2011). Why red Doesn’t sound like a bell: Understanding the feel of consciousness. New York: Oxford University Press.

    Google Scholar 

  • O’Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of ‘mudsplashes’. Nature, 398, 34.

    Google Scholar 

  • O’Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7(1/2/3), 191–211.

    Google Scholar 

  • O’Regan, J. K., Myin, E., & Noë, A. (2005). Sensory consciousness explained (better) in terms of ‘corporality’ and ‘alerting capacity’. Phenomenology and the Cognitive Sciences, 4, 369–387.

    Google Scholar 

  • Oh, S.-Y., Boegle, R., Ertl, M., Stephan, T., & Dieterich, M. (2018). Multisensory vestibular, vestibular-auditory, and auditory network effects revealed by parametric sound pressure stimulation. Neuroimage, 176, 354–363.

    Google Scholar 

  • O'Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939–1031.

    Google Scholar 

  • Palomar-García, M. Á., Zatorre, R. J., Ventura-Campos, N., Bueichekú, E., & Ávila, C. (2017). Modulation of functional connectivity in auditory-motor networks in musicians compared with nonmusicians. Cerebral Cortex, 27(5), 2768–2778.

    Google Scholar 

  • Pascal, F., & O'Regan, K. (2008). Commentary on Mossio and Taraborelli: is the enactive approach really sensorimotor? Consciousness and Cognition, 17(4), 1341–1342.

    Google Scholar 

  • Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008). The sound of actions in apraxia. Current Biology, 18, 1766–1772.

    Google Scholar 

  • Perrett, S., & Noble, W. (1997). The contribution of head motion cues to localization of low-pass noise. Perception & Psychophysics, 59(7), 1018–1026.

    Google Scholar 

  • Pessoa, L., Thompson, E., & Noë, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behavioral and Brain Sciences, 21(6), 723–802.

    Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67(1), 94–102.

    Google Scholar 

  • Pizzamiglio, L., Aprile, T., Spitoni, G., Pitzalis, S., Bates, E., D’Amico, S., & Di Russo, F. (2005). Separate neural systems for processing action- or non-action-related sounds. Neuroimage, 24, 852–861.

    Google Scholar 

  • Pulvermüller, F., Huss, M., Kherif, F., del Prado Martin, F. M., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the USA, 103(20), 7865–7870.

    Google Scholar 

  • Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8(4), 516–521.

    Google Scholar 

  • Rauschecker, J. P. (2018). Where, when, and how: are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex, 98, 262–268.

    Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.

    Google Scholar 

  • Raveh, D., & Lavie, N. (2015). Load-induced inattentional deafness. Attention, Perception, & Psychophysics, 77(2), 483–492.

    Google Scholar 

  • Repp, B. H. (1992). Perceptual restoration of a “missing” speech sound: auditory induction or illusion? Perception & Psychophysics, 51(1), 14–32.

    Google Scholar 

  • Riecke, L., van Opstal, A. J., Goebel, R., & Formisano, E. (2007). Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex. The Journal of Neuroscience, 27(46), 12684–12689.

    Google Scholar 

  • Riecke, L., van Opstal, A. J., & Formisano, E. (2008). The auditory continuity illusion: a parametric investigation and filter model. Perception & Psychophysics, 70(1), 1–12.

    Google Scholar 

  • Rietveld, E., Denys, D., & Van Westen, M. (2018). Ecological-enactive cognition as engaging with a field of relevant affordances: The skilled intentionality framework (SIF). In A. Newell, L. De Bruin, & S. Gallagher (Eds.), The Oxford handbook of 4E cognition (pp. 41–70). Oxford: Oxford University Press.

    Google Scholar 

  • Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188–194.

    Google Scholar 

  • Rizzolatti, G., & Sinigaglia, C. (2016). The mirror mechanism: a basic principle of brain function. Nature Reviews Neuroscience, 17, 757–765.

    Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.

    Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.

    Google Scholar 

  • Rosenblum, L. D., Gordon, M. S., & Jarquin, L. (2000). Echolocating distance by moving and stationary listeners. Ecological Psychology, 12(3), 181–206.

    Google Scholar 

  • Ross, J. M., Iversen, J. R., & Balasubramaniam, R. (2016). Motor simulation theories of musical beat perception. Neurocase, 22(6), 558–565.

    Google Scholar 

  • Schalles, M. D., & Pineda, J. A. (2015). Musical sequence learning and EEG correlates of audiomotor processing. Behavioural Neurology, 2015(638202), 1–11. https://doi.org/10.1155/2015/638202.

    Article  Google Scholar 

  • Schomers, M. R., & Pulvermüller, F. (2016). Is the sensorimotor cortex relevant for speech perception and understanding? An integrative review. Frontiers in Human Neuroscience, 10(435). https://doi.org/10.3389/fnhum.2016.00435.

  • Schumann, F., & O’Regan, J. K. (2017). Sensory augmentation: integration of an auditory compass signal into human perception of space. Scientific Reports, 7(42197). https://doi.org/10.1038/srep42197.

  • Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synaesthesia. Cognitive Neuroscience, 5(2), 97–118. https://doi.org/10.1080/17588928.2013.877880.

    Article  Google Scholar 

  • Shahin, A. J., Bishop, C. W., & Miller, L. M. (2009). Neural mechanisms for illusory filling-in of degraded speech. Neuroimage, 44, 1133–1143.

    Google Scholar 

  • Silva Pereira, C., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., & Brattico, E. (2011). Music and emotions in the brain: familiarity matters. PLoS One, 6(11), e27241. https://doi.org/10.1371/journal.pone.0027241.

    Article  Google Scholar 

  • Silverman, D. (2013). Sensorimotor enactivism and temporal experience. Adaptive Behavior, 21(3), 151–158.

    Google Scholar 

  • Silverman, D. (2018). Bodily skill and internal representation in sensorimotor perception. Phenomenology and the Cognitive Sciences, 17, 157–173.

    Google Scholar 

  • Simmons, F. B. (1964). Perceptual theories of middle ear muscle function. Annals of Otology, Rhinology and Laryngology, 73, 724–739.

    Google Scholar 

  • Skipper, J. I., Devlin, J. T., & Lametti, D. R. (2017). The hearing ear is always found close to the speaking tongue: review of the role of the motor system in speech perception. Brain and Language, 164, 77–105.

    Google Scholar 

  • Steinbrink, C., Ackermann, H., Lachmann, T., & Riecker, A. (2009). Contribution of the anterior insula to temporal auditory processing deficits in developmental dyslexia. Human Brain Mapping, 30, 2401–2411.

    Google Scholar 

  • Stephan, M. A., Lega, C., & Penhune, V. B. (2018). Auditory prediction cues motor preparation in the absence of movements. Neuroimage, 174, 288–296.

    Google Scholar 

  • Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: a TMS investigation. Brain and Cognition, 82(2), 127–136.

    Google Scholar 

  • Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Ticini, L. F., Schütz-Bosbach, S., Weiss, C., Casile, A., & Waszak, F. (2012). When sounds become actions: higher-order representation of newly learned action sounds in the human motor system. Journal of Cognitive Neuroscience, 24(2), 464–474.

    Google Scholar 

  • Ticini, L. F., Schütz-Bosbach, S., & Waszak, F. (2017). Mirror and (absence of) counter-mirror responses to action sounds measured with TMS. Social Cognitive and Affective Neuroscience, 12(11), 1748–1757.

    Google Scholar 

  • Ticini, L. F., Schütz-Bosbach, S., & Waszak, F. (2019). From goals to muscles: motor familiarity shapes the representation of action-related sounds in the human motor system. Cognitive Neuroscience, 10(1), 20–29.

    Google Scholar 

  • Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005). Speech segmentation by statistical learning depends on attention. Cognition, 97(2), B25–B34.

    Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: cognitive science and human experience. Cambridge: MIT Press.

    Google Scholar 

  • Vörös, S., Froese, T., & Riegler, A. (2016). Epistemological odyssey: introduction to special issue on the diversity of enactivism and neurophenomenology. Constructivist Foundations, 11(2), 189–203.

    Google Scholar 

  • Wallach, H. (1940). The role of head movements and vestibular and visual cues in sound localization. Journal of Experimental Psychology, 27(4), 339–368.

    Google Scholar 

  • Ward, D., Silverman, D., & Villalobos, M. (2017). Introduction: the varieties of enactivism. Topoi, 36(3), 365–375.

    Google Scholar 

  • Warren, R. M., Obusek, C. J., & Ackroff, J. M. (1972). Auditory induction: perceptual synthesis of absent sounds. Science, 176, 1149–1151.

    Google Scholar 

  • Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989–994.

    Google Scholar 

  • Wayland, J. F., Levin, D. T., & Varakin, D. A. (2005). Inattentional blindness for a noxious multimodal stimulus. American Journal of Psychology, 118(3), 339–352.

    Google Scholar 

  • Wilson, S. M., & Iacoboni, M. (2006). Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. Neuroimage, 33(1), 316–325.

    Google Scholar 

  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

    Google Scholar 

  • Wood, N., & Cowan, N. (1995). The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 255–260.

    Google Scholar 

  • Woods, E. A., Hernandez, A. E., Wagner, V. E., & Beilock, S. L. (2014). Expert athletes activate somatosensory and motor planning regions of the brain when passively listening to familiar sports sounds. Brain and Cognition, 87, 122–133.

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to Luis Pineda, who provided helpful feedback throughout the whole writing process, and to Masatoshi Yoshida, who provided useful comments on the penultimate draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Froese.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Froese, T., González-Grandón, X. How passive is passive listening? Toward a sensorimotor theory of auditory perception. Phenom Cogn Sci 19, 619–651 (2020). https://doi.org/10.1007/s11097-019-09641-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11097-019-09641-6

Keywords

Navigation