Skip to main content
Log in

Identification of Surfactant Impact on a Monoclonal Antibody Characterization via HPLC-Separation Based and Biophysical Methods

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose or Objective

Surfactants, including polysorbates and poloxamers, play a crucial role in the formulation of therapeutic proteins by acting as solubilizing and stabilizing agents. They help prevent protein aggregation and adsorption, thereby enhancing the stability of drug substance and products., However, it is important to note that utilizing high concentrations of surfactants in protein formulations can present significant analytical challenges, which can ultimately affect the product characterization.

Methods

In our study, we specifically investigated the impact of elevated surfactant concentrations on the characterization of monoclonal antibodies. We employed various analytical techniques including size-exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), a cell based functional assay, and biophysical characterization.

Results

The findings of our study indicate that higher levels of Polysorbate 80 (PS-80) have adverse effects on the measured purity, biological activity, and biophysical characterization of biologic samples. Specifically, the elevated levels of PS-80 cause analytical interferences, which can significantly impact the accuracy and reliability of analytical studies.

Conclusions

Our study results highlight a significant risk in analytical investigations, especially in studies involving the isolation and characterization of impurities. It is important to be cautious of surfactant concentrations, as they can become more concentrated during common sample manipulations like buffer exchange. Indeed, the research presented in this work emphasizes the necessity to evaluate the impact on analytical assays when there are substantial alternations in the matrix composition. By doing so, valuable insights can be gained regarding potential challenges associated with assay development and characterization of biologics with complex formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dimitrov DS. Therapeutic Proteins. In: Voynov V, Caravella JA, editors. Therapeutic Proteins: Methods and Protocols. Totowa, NJ: Humana Press; 2012. p. 1–26.

    Google Scholar 

  2. Mullard A. 2022 FDA approvals. Nat Rev Drug Discov. 2023;22(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  3. Breedveld FC. Therapeutic monoclonal antibodies. The Lancet. 2000;355(9205):735–40.

    Article  CAS  Google Scholar 

  4. Waldmann TA. Monoclonal Antibodies in Diagnosis and Therapy. Science. 1991;252(5013):1657–62.

    Article  CAS  PubMed  Google Scholar 

  5. Pinholt C, Hartvig RA, Medlicott NJ, Jorgensen L. The importance of interfaces in protein drug delivery - why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv. 2011;8(7):949–64.

    Article  CAS  PubMed  Google Scholar 

  6. Khan TA, Mahler HC, Kishore RS. Key interactions of surfactants in therapeutic protein formulations: A review. Eur J Pharm Biopharm. 2015;97(Pt A):60–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kim HL, McAuley A, McGuire J. Protein effects on surfactant adsorption suggest the dominant mode of surfactant-mediated stabilization of protein. J Pharm Sci. 2014;103(5):1337–45.

    Article  CAS  PubMed  Google Scholar 

  8. Deechongkit S, Wen J, Narhi LO, Jiang Y, Park SS, Kim J, et al. Physical and biophysical effects of polysorbate 20 and 80 on darbepoetin alfa. J Pharm Sci. 2009;98(9):3200–17.

    Article  CAS  PubMed  Google Scholar 

  9. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24(10):1241–52.

    Article  CAS  PubMed  Google Scholar 

  10. Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115(7):1646–65.

    Article  CAS  PubMed  Google Scholar 

  11. Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;4(5):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kahle J, Watzig H. Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis. 2018;39(20):2492–511.

    Article  CAS  PubMed  Google Scholar 

  13. Fekete S, Beck A, Veuthey JL, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal. 2015;113:43–55.

    Article  CAS  PubMed  Google Scholar 

  14. Neill A, Nowak C, Patel R, Ponniah G, Gonzalez N, Miano D, et al. Characterization of Recombinant Monoclonal Antibody Charge Variants Using OFFGEL Fractionation, Weak Anion Exchange Chromatography, and Mass Spectrometry. Anal Chem. 2015;87(12):6204–11.

    Article  CAS  PubMed  Google Scholar 

  15. Jaag S, Shirokikh M, Lammerhofer M. Charge variant analysis of protein-based biopharmaceuticals using two-dimensional liquid chromatography hyphenated to mass spectrometry. J Chromatogr A. 2021;1636: 461786.

    Article  CAS  PubMed  Google Scholar 

  16. Shi RL, Xiao G, Dillon TM, Ricci MS, Bondarenko PV. Characterization of therapeutic proteins by cation exchange chromatography-mass spectrometry and top-down analysis. MAbs. 2020;12(1):1739825.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leblanc Y, Ramon C, Bihoreau N, Chevreux G. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5°C. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1048:130–9.

    Article  CAS  PubMed  Google Scholar 

  18. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of Buffers in Protein Formulations. J Pharm Sci. 2017;106(3):713–33.

    Article  CAS  PubMed  Google Scholar 

  19. Yang K, Hewarathna A, Geerlof-Vidavsky I, Rao VA, Gryniewicz-Ruzicka C, Keire D. Screening of Polysorbate-80 Composition by High Resolution Mass Spectrometry with Rapid H/D Exchange. Anal Chem. 2019;91(22):14649–56.

    Article  CAS  PubMed  Google Scholar 

  20. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J Pharm Sci. 2005;94(6):1368–81.

    Article  CAS  PubMed  Google Scholar 

  21. Bartling CM, Andre JC, Howland CA, Hester ME, Cafmeyer JT, Kerr A, et al. Stability Characterization of a Polysorbate 80-Dimethyl Trisulfide Formulation, a Cyanide Antidote Candidate. Drugs R D. 2016;16(1):109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toutain-Kidd CM, Kadivar SC, Bramante CT, Bobin SA, Zegans ME. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother. 2009;53(1):136–45.

    Article  CAS  PubMed  Google Scholar 

  23. Singh SM, Bandi S, Jones DNM, Mallela KMG. Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2D Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci. 2017;106(12):3486–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lakowicz JR. On spectral relaxation in proteins. Photochem Photobiol. 2000;72(4):421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Randolph TW, Jones LS. Surfactant-protein interactions. Pharm Biotechnol. 2002;13:159–75.

    Article  CAS  PubMed  Google Scholar 

  26. Sinha NJ, Guo R, Misra R, Fagan J, Faraone A, Kloxin CJ, et al. Colloid-like solution behavior of computationally designed coiled coil bundlemers. J Colloid Interface Sci. 2022;606(Pt 2):1974–82.

    Article  CAS  PubMed  Google Scholar 

  27. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–93.

    PubMed  PubMed Central  Google Scholar 

  28. Falke S, Betzel C. Dynamic Light Scattering (DLS): principles, perspectives, applications to biological samples. Radiation in Bioanalysis. 2019;8:173–93.

  29. Otzen D. Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta. 2011;1814(5):562–91.

    Article  CAS  PubMed  Google Scholar 

  30. Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. Pharm Sci Technol Today. 2000;3(4):129–37.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Wang YJ, Wang DQ. Dual effects of Tween 80 on protein stability. Int J Pharm. 2008;347(1–2):31–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou X, Fennema Galparsoro D, Østergaard Madsen A, Vetri V, van de Weert M, Mørck Nielsen H, et al. Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites. J Colloid Interface Sci. 2022;606:1928–39.

    Article  CAS  PubMed  Google Scholar 

  33. Horiuchi S, Winter G. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology. Eur J Pharm Biopharm. 2015;92:8–14.

    Article  CAS  PubMed  Google Scholar 

  34. Lutz H, Wilkins R, Carbrello C. Sterile Filtration: Principles, Best Practices and New Developments. In: Kolhe P, Shah M, Rathore N, editors. Sterile Product Development: Formulation, Process, Quality and Regulatory Considerations. New York, NY: Springer New York. 2013 431–59.

  35. Mahler H-C, Huber F, Kishore RSK, Reindl J, Rückert P, Müller R. Adsorption Behavior of a Surfactant and a Monoclonal Antibody to Sterilizing-Grade Filters. J Pharm Sci. 2010;99(6):2620–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to our colleagues Aoshuang Xu, Katie Neal, Jonathan Welch, Kirby Martinez-Fonts for their scientific discussion and help with the experiments.

Funding

The authors would like to acknowledge MRL, Department of Analytical Research & Development (Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA) for research funding to support this work.

Author information

Authors and Affiliations

Authors

Contributions

KZ, JS, designed and performed the experiments, analyzed the data and draft the manuscript. PB designed and performed the experiments and analyzed the data. AJP designed the experiments, analyzed the data and refined the manuscript. JRB, RCG and HX provided constructive suggestions and refined the manuscript.

Corresponding authors

Correspondence to Kaizhu Guo or Jing Song.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest related to the work in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Song, J., Bennington, P. et al. Identification of Surfactant Impact on a Monoclonal Antibody Characterization via HPLC-Separation Based and Biophysical Methods. Pharm Res 41, 779–793 (2024). https://doi.org/10.1007/s11095-024-03684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03684-4

Keywords

Navigation