Skip to main content

Advertisement

Log in

Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease.

Methods

Pigmented Abca4−/− knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG).

Results

PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram.

Conclusions

Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hu ML, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021;104:444–54.

    Article  PubMed  Google Scholar 

  2. Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discovery Today. 2019;24:949–54.

    Article  PubMed  Google Scholar 

  3. Maguire AM, Bennett J, Aleman EM, Leroy BP, Aleman TS. Clinical perspective: treating RPE65-associated retinal dystrophy. Mol Ther. 2021;29:442–63.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. 2001;53:1169–74.

    Article  CAS  PubMed  Google Scholar 

  5. Issa PC, MacLaren RE. Non-viral retinal gene therapy: a review. Clin Experiment Ophthalmol. 2012;40:39–47.

    Article  Google Scholar 

  6. Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials. 2013;34:7158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conley SM, Cai X, Naash MI. Non-viral ocular gene therapy: assessment and future directions. Curr Opin Mol Ther. 2008;10:456.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bloquel C, et al. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev. 2006;58:1224–42.

    Article  CAS  PubMed  Google Scholar 

  9. Naik R, Mukhopadhyay A, Ganguli M. Gene delivery to the retina: focus on non-viral approaches. Drug Discovery Today. 2009;14:306–15.

    Article  CAS  PubMed  Google Scholar 

  10. del Pozo-Rodriguez A, Delgado D, Solinis M, Gascon A, Pedraz J. Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in RPE cells. Int J Pharm. 2008;360:177–83.

    Article  PubMed  Google Scholar 

  11. del Pozo-Rodriguez A, Solinís MÁ, Rodríguez-Gascón A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 2016;109:184–93.

    Article  PubMed  Google Scholar 

  12. Hoy S. M. Patisiran: first global approval. Drugs. 2018;78:1625–31.

    Article  CAS  PubMed  Google Scholar 

  13. Adams D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.

    Article  CAS  PubMed  Google Scholar 

  14. Schoenmaker L, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol. 2022;74:103553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet. 2021;41:100424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X-L, Ramusovic S, Nguyen T, Lu Z-R. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug Chem. 2007;18:2169–77.

    Article  CAS  PubMed  Google Scholar 

  18. Gujrati M, et al. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm. 2014;11:2734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu Z-R. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J Control Release. 2013;171:296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gujrati M, Vaidya A, Lu Z-R. Multifunctional pH-sensitive amino lipids for siRNA delivery. Bioconjug Chem. 2016;27:19–35.

    Article  CAS  PubMed  Google Scholar 

  21. Lu ZR, Laney VE, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthcare Mater. 2021;10:2001294.

    Article  CAS  Google Scholar 

  22. Vaidya AM, et al. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem. 2019;30:907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun D, et al. Targeted multifunctional lipid ECO plasmid DNA nanoparticles as efficient non-viral gene therapy for Leber’s congenital amaurosis. Mol Ther-Nucl Acids. 2017;7:42–52.

    Article  CAS  Google Scholar 

  24. Sun D, et al. Self-Assembly of a Multifunctional Lipid With Core-Shell Dendrimer DNA Nanoparticles Enhanced Efficient Gene Delivery at Low Charge Ratios into RPE Cells. Macromol Biosci. 2015;15:1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun D, et al. Non-viral gene therapy for Stargardt disease with ECO/pRHO-ABCA4 self-assembled nanoparticles. Mol Ther. 2020;28:293–303.

    Article  CAS  PubMed  Google Scholar 

  26. Sun D, et al. Synthesis and evaluation of pH-sensitive multifunctional lipids for efficient delivery of CRISPR/Cas9 in gene editing. Bioconjug Chem. 2018;30:667–78.

    Article  PubMed Central  Google Scholar 

  27. Ayat NR, et al. Formulation of biocompatible targeted ECO/siRNA nanoparticles with long-term stability for clinical translation of RNAi. Nucleic Acid Ther. 2019;29:195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schilb AL, et al. Efficacy of targeted ECO/miR-200c nanoparticles for modulating tumor microenvironment and treating triple negative breast cancer as non-invasively monitored by MR molecular imaging. Pharm Res. 2021;38:1405–18.

    Article  CAS  PubMed  Google Scholar 

  29. Sun D, et al. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. J Control Release. 2021;330:329–40.

    Article  CAS  PubMed  Google Scholar 

  30. Sun D, et al. Stable retinoid analogue targeted dual pH-sensitive smart lipid ECO/pDNA nanoparticles for specific gene delivery in the retinal pigment epithelium. ACS Appl Bio Mater. 2020;3:3078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schilb AL, et al. Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids. Pharmaceuticals. 2021;14:1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun D, et al. Effective gene therapy of Stargardt disease with PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles. Mol Ther-Nucleic Acids. 2022;29:823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weng CY. Bilateral subretinal voretigene neparvovec-rzyl (Luxturna) gene therapy. Ophthalmol Retina. 2019;3:450.

    Article  PubMed  Google Scholar 

  34. Ladha R, Meenink T, Smit J, de Smet MD. Advantages of robotic assistance over a manual approach in simulated subretinal injections and its relevance for gene therapy. Gene Ther. 2021;30:1–7.

    Google Scholar 

  35. Ladha R, Caspers LE, Willermain F, de Smet MD. Subretinal Therapy: Technological Solutions to Surgical and Immunological Challenges. Front Med. 2022;9:846782.

    Article  Google Scholar 

  36. Ochakovski GA, et al. Subretinal injection for gene therapy does not cause clinically significant outer nuclear layer thinning in normal primate foveae. Invest Ophthalmol Vis Sci. 2017;58:4155–60.

    Article  CAS  PubMed  Google Scholar 

  37. Mühlfriedel R, Michalakis S, Garrido MG, Biel M, Seeliger MW. Optimized technique for subretinal injections in mice. In: Weber B, Langmann T, editors. Retinal degeneration. Methods in molecular biology, vol 935. Totowa: Humana Press; 2012, pp. 343-349. https://doi.org/10.1007/978-1-62703-080-9_24

  38. Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58:217–26.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer CH, Krohne TU, Issa PC, Liu Z, Holz FG. Routes for drug delivery to the eye and retina: intravitreal injections. Retinal Pharmacother. 2016;55:63–70.

    Article  Google Scholar 

  40. Abell RG, Kerr NM, Allen P, Vote BJ. Intravitreal injections: is there benefit for a theatre setting? Br J Ophthalmol. 2012;96:1474–8.

    Article  PubMed  Google Scholar 

  41. Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res. 2021;16:1751–9. https://doi.org/10.4103/1673-5374.306063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene therapy in retinal diseases: A review. Indian J Ophthalmol. 2021;69:2257–65. https://doi.org/10.4103/ijo.IJO_3117_20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aziz AA. et al. Review of gene therapy clinical trials for retinal diseases. Int Ophthalmol Clin 2024;64.

  44. Martens TF, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92.

    Article  CAS  PubMed  Google Scholar 

  45. Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro-and microscale properties of the vitreous humor to inform substitute design and intravitreal biotransport. Curr Eye Res. 2021;46:429–44.

    Article  CAS  PubMed  Google Scholar 

  46. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Nat Acad Sci United States Am. 2004;101:5928–33. https://doi.org/10.1073/pnas.0308302101.

    Article  CAS  Google Scholar 

  47. Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: A review. Eye. 1995;9:763. https://doi.org/10.1038/eye.1995.192.

    Article  PubMed  Google Scholar 

  48. Radu RA, et al. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Nat Acad Sci. 2003;100:4742–7. https://doi.org/10.1073/pnas.0737855100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Radu R, Mata N, Sieving P, Travis G. Treatment Of Abcr-/- Mice With Isotretinoin Inhibits Accumulation Of Lipofuscin. Invest Ophthalmol Vis Sci. 2002;43:4579–4579.

    Google Scholar 

  50. McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161:241–54.

    Article  CAS  PubMed  Google Scholar 

  51. Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol. 2013;8:127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hillenkamp J, Surguch V, Framme C, Gabel V-P, Sachs HG. Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2010;248:5–11.

    Article  CAS  PubMed  Google Scholar 

  53. Swetledge S, Jung JP, Carter R, Sabliov C. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy. J Nanobiotechnol. 2021;19:1–19.

    Article  Google Scholar 

  54. Martens TF, et al. Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. Eur J Pharm Sci. 2017;103:27–35.

    Article  CAS  PubMed  Google Scholar 

  55. Chaharband F, et al. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. Nanomed Nanotechnol Biol Med. 2020;26:102181. https://doi.org/10.1016/j.nano.2020.102181.

    Article  CAS  Google Scholar 

  56. Martens TF, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92. https://doi.org/10.1016/j.jconrel.2015.01.030.

    Article  CAS  PubMed  Google Scholar 

  57. Özkiriş A, Erkiliç K. Complications of intravitreal injection of triamcinolone acetonide. Can J Ophthalmol. 2005;40:63–8.

    Article  PubMed  Google Scholar 

  58. Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21:178–83.

    Article  PubMed  Google Scholar 

  59. Maeda A, Maeda T, Golczak M, Palczewski K. Retinopathy in Mice Induced by Disrupted All-trans-retinal Clearance. J Biol Chem. 2008;283:26684–93. https://doi.org/10.1074/jbc.M804505200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C. Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis. 2001;7:131–7.

    CAS  PubMed  Google Scholar 

  61. Johnson CJ, et al. Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis. 2008;14:2211–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moon J, Ramkumar S, von Lintig J. Genetic tuning of β-carotene oxygenase-1 activity rescues cone photoreceptor function in STRA6-deficient mice. Human Mol Gene. 2022;32:798–809.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Gund-Harrington Scholars Award from the Harrington Discovery Institute and the Foundation Fighting Blindness, and National Cancer Institute R01CA235152. ZRL is an M. Frank Rudy and Margaret Domiter Rudy Professor of Biomedical Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Z.R.L., D.S. and W.S. conceived of the strategy, and designed the experiments. D.S and W.S. were involved in all aspects of this work. J.L. performed analysis of nanoparticle formulations. W.S., D.S. S.G. provided help on ERG examinations. D.S and C.N. performed SLO. R.H. and H.W. provided help on PCR and data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zheng-Rong Lu.

Ethics declarations

Conflict of Interest

The gene therapy reported in this work was licensed to Helios BioPharmaceuticals for commercialization. ZRL may have ownership interest in the company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Sun, W., Gao, SQ. et al. Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease. Pharm Res 41, 807–817 (2024). https://doi.org/10.1007/s11095-024-03679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03679-1

Keywords

Navigation