Skip to main content
Log in

Novel Pharmaceutical Cocrystals of Tegafur: Synthesis, Performance, and Theoretical Studies

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tegafur (TF) is one of the most important clinical antitumor drugs with poor water solubility, severely reducing its bioavailability. This work develops new cocrystals to improve the solubility of TF and systematically investigates the intermolecular interactions to provide new insights into the formation of cocrystal and changes in physicochemical properties.

Method

In this paper, two new 1:1 cocrystals of TF with 2,4 dihydroxybenzoic acid (2,4HBA) and p-nitrophenol (PNP) were synthesized. The cocrystal products were identified and characterized by various solid state analysis techniques. And the high performance liquid chromatography (HPLC) was conducted to determine the solubility and dissolution rate of TF and cocrystals. Moreover, the quantum chemistry calculations of crystal structure provided theoretical support for the results.

Result

Compared with pure TF, the solubility and dissolution rate of TF-2,4HBA is significantly increased in a pH 6.8 buffer at 37°C. Under accelerated storage conditions (40°C, 75% RH), all cocrystal exhibits excellent stability over 8 weeks. Hirshfeld surface (HS) analysis, atoms in molecules (AIM) analysis, interaction region indicator (IRI) analysis, molecular electrostatic potential surface (MEPS) analysis and frontier molecular orbital (HOMO–LUMO) analysis were integrated to understand the hydrogen bonding interaction more comprehensively. The simulation results are in good agreement with the experimental data. The results show that the analysis of physical and chemical properties of TF-PNP cocrystal and TF crystal by quantum chemistry method is reliable at molecular level.

Conclusion

These results are helpful to provide guiding methods in the cocrystal development and theoretical study of tegafur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Jiang N, Cui Y, Liu J, Zhu X, Wu H, Yang Z, et al. Multidimensional Roles of Collagen Triple Helix Repeat Containing 1 (CTHRC1) in Malignant Cancers. J Cancer. 2016;7:2213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu D, Zhang B, Yao Q, Hou B, Zhou L, Xie C, et al. Evaluation on Cocrystal Screening Methods and Synthesis of Multicomponent Crystals: A Case Study. Cryst Growth Des. 2021;21:4531–46.

    Article  CAS  Google Scholar 

  3. Wang N, Hao H, Lu H, Xu R. Molecular recognition and self-assembly mechanism of cocrystallization processes. CrystEngComm. 2017;19:3746–52.

    Article  CAS  Google Scholar 

  4. Li W, Zhou L, Tian B, Chen K, Feng Y, Wang T, et al. Polymorphism of Pradofloxacin: Crystal Structure Analysis, Stability Study, and Phase Transformation Behavior. Pharm Res. 2023;40:999–1012.

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Wang N, Sui J, Sun S, Feng Z, Li G, et al. Case of Chiral Resolution through Converting Two Racemic Compounds into a Conglomerate. Cryst Growth Des. 2023;23:5641–50.

    Article  CAS  Google Scholar 

  6. Sui J, Wang N, Wang J, Li X, Yang J, Liu Y, et al. Thermodynamic and Molecular Recognition Mechanism of Diastereomeric Salt/Cocrystal-Induced Chiral Separation. Cryst Growth Des. 2022;22:4382–95.

    Article  CAS  Google Scholar 

  7. Chen A, Cai P, Luo M, Guo M, Cai T. Melt Crystallization of Celecoxib-Carbamazepine Cocrystals with the Synchronized Release of Drugs. Pharm Res. 2022;40:567–77.

    Article  PubMed  Google Scholar 

  8. Duan C, Liu W, Tao Y, Liang F, Chen Y, Xiao X, et al. Two Novel Palbociclib-Resorcinol and Palbociclib-Orcinol Cocrystals with Enhanced Solubility and Dissolution Rate. Pharmaceutics. 2021;14:23.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yousef MAE, Vangala VR. Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Cryst Growth Des. 2019;19:7420–38.

    Article  CAS  Google Scholar 

  10. Lv W-T, Liu X-X, Dai X-L, Long X-T, Chen J-M. A 5-fluorouracil–kaempferol drug–drug cocrystal: a ternary phase diagram, characterization and property evaluation. CrystEngComm. 2020;22:8127–35.

    Article  CAS  Google Scholar 

  11. Wu C, Xiao Y, Jing Y, Yin Q, Bao Y. New Insights into the Solubilization of Multicomponent Crystals: A Case Study of Pipemidic Acid. Cryst Growth Des. 2023;23:3367–83.

    Article  CAS  Google Scholar 

  12. Sun CC. Cocrystallization for successful drug delivery. Expert Opin Drug Deliv. 2012;10:201–13.

    Article  PubMed  Google Scholar 

  13. Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52:640–55.

    Article  CAS  Google Scholar 

  14. Cooke JWB, Bright R, Coleman MJ, Jenkins KP. Process Research and Development of a Dihydropyrimidine Dehydrogenase Inactivator: Large-Scale Preparation of Eniluracil Using a Sonogashira Coupling. Org Process Res Dev. 2001;5:383–6.

    Article  CAS  Google Scholar 

  15. Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev. 2022;122:11514–603.

    Article  CAS  PubMed  Google Scholar 

  16. Aakeröy C. The Weak Hydrogen Bond−In Structural Chemistry and Biology By Gautam R. Desiraju and Thomas Steiner. IUCr Monographs on Crystallography 9, Oxford Science Publications, Oxford. 1999. ISBN 0198502524. Cryst Growth Des. 2001; 1:255–255

  17. Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography Monographs on Crystallography. Oxford University Press. 2009; No. 23.

  18. Xiao Y, Wu C, Hu X, Chen K, Qi L, Cui P, et al. Mechanochemical Synthesis of Cocrystal: From Mechanism to Application. Cryst Growth Des. 2023;23:4680–700.

    Article  CAS  Google Scholar 

  19. Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017;117:178–95.

    Article  CAS  PubMed  Google Scholar 

  20. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 2012;41:413–47.

    Article  CAS  PubMed  Google Scholar 

  21. Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew Chem. 2019;132:1030–41.

    Article  ADS  Google Scholar 

  22. Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. Chemsuschem. 2021;14:2145–62.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang N, Yin Y, Xu S-J, Chen W-S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules. 2008;13:1551–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kajanti MJ, Pyrhönen SO, Maiche AG. Oral tegafur in the treatment of metastatic breast cancer: A phase II study. Eur J Cancer. 1993;29:863–6.

    Article  Google Scholar 

  25. Yue Y, Zhang Q, Wang X, Sun Z. STAT3 regulates 5-Fu resistance in human colorectal cancer cells by promoting Mcl-1–dependent cytoprotective autophagy. Cancer Sci. 2023;114:2293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi F, Ikeda T, Sakamoto N, Kurosaki M, Tozuka S, Sakamoto S, et al. Severe chronic active hepatitis induced by UFTR containing tegafur and uracil. Dig Dis Sci. 1995;40:2434–7.

    Article  CAS  PubMed  Google Scholar 

  27. Aitipamula S, Chow PS, Tan RBH. Crystal Engineering of Tegafur Cocrystals: Structural Analysis and Physicochemical Properties. Cryst Growth Des. 2014;14:6557–69.

    Article  CAS  Google Scholar 

  28. Yu Y-M, Yu M-C, Wang L-Y, Li Y-T, Wu Z-Y, Yan C-W. A supramolecular adduct of tegafur and syringic acid: the first tegafur-nutraceutical cocrystal with perfected in vitro and in vivo characteristics as well as synergized anticancer activities. New J Chem. 2020;44:15994–6005.

    Article  CAS  Google Scholar 

  29. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, et al. Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystallogr. 2020;53:226–35.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321:1–11.

    Article  CAS  PubMed  Google Scholar 

  31. McKinnon JJ, Spackman MA, Mitchell AS. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B-Struct Sci. 2004;60:627–68.

    Article  ADS  Google Scholar 

  32. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, et al. First principles methods using CASTEP. Z Krist-Cryst Mater. 2005;220:567–70.

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996;77:3865–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–5.

    Article  CAS  ADS  Google Scholar 

  35. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–99.

    Article  CAS  PubMed  Google Scholar 

  36. Lu T. Molclus program, Version 1. 12. 2023. http://www.keinsci.com/research/molclus.html. Accessed 23 Aug 2023.

  37. Eichkorn K, Weigend F, Treutler O, Ahlrichs R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc. 1997;97:119–24.

    Article  CAS  Google Scholar 

  38. Mardirossian N, Head-Gordon M. Note: The performance of new density functionals for a recent blind test of non-covalent interactions. J Chem Phys. 2016;145:186101.

  39. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297.

    Article  CAS  PubMed  Google Scholar 

  40. Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys. 2020;152:224108.

  41. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2011;33:580–92.

    Article  PubMed  Google Scholar 

  42. Lu T, Chen F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph. 2012;38:314–23.

    Article  Google Scholar 

  43. Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    Article  CAS  PubMed  Google Scholar 

  44. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  ADS  Google Scholar 

  45. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456–65.

    Article  CAS  PubMed  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104.

  47. McKinnon JJ, Jayatilaka D, Spackman MA. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun. 2007;37:3814–6.

  48. Emamian S, Lu T, Kruse H, Emamian H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J Comput Chem. 2019;40:2868–81.

    Article  CAS  PubMed  Google Scholar 

  49. Rozas I, Alkorta I, Elguero J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J Am Chem Soc. 2000;122:11154–61.

    Article  CAS  Google Scholar 

  50. Lu T, chen qinxue. Interaction Region Indicator (IRI): A Very Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions. J Am Chem Soc. 2021. https://doi.org/10.26434/chemrxiv.13591142.v1.

  51. Murray JS, Politzer P. The electrostatic potential: an overview. Wiley Interdiscip Rev-Comput Mol Sci. 2011;1:153–63.

    Article  CAS  Google Scholar 

  52. Wang M, Gao L, Taiwaikuli M, Mei H, Wang T, Huang X. Solubility Measurement, Thermodynamic Correlation, and Comprehensive Analysis of 3,5-Dinitrobenzoic Acid in 13 Pure Solvents. J Chem Eng Data. 2022;67:2833–44.

    Article  CAS  Google Scholar 

  53. Fu Q, Han Y, Xie Y, Gong N, Guo F. Carbamazepine cocrystals with several aromatic carboxylic acids in different stoichiometries: Structures and solid state characterization. J Mol Struct. 2018;1168:145–52.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No.21978201] and [No. 22108196].

Funding

This work was supported by National Natural Science Foundation of China, 21978201, 22108196.

Author information

Authors and Affiliations

Authors

Contributions

Haoran Mei: conceptualization, writing – review & editing. Na Wang: writing – review & editing. Di Wu: software. Qi Rong: investigation. Xue Bai: investigation. Xin Huang: funding acquisition. Lina Zhou: funding acquisition. Ting Wang: funding acquisition. Hongxun Hao: resources, writing – review & editing.

Corresponding authors

Correspondence to Na Wang or Hongxun Hao.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, H., Wang, N., Wu, D. et al. Novel Pharmaceutical Cocrystals of Tegafur: Synthesis, Performance, and Theoretical Studies. Pharm Res 41, 577–593 (2024). https://doi.org/10.1007/s11095-024-03668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03668-4

Keywords

Navigation