Skip to main content

Advertisement

Log in

Discovery of the Next Generation of Non-peptidomimetic Neurolysin Activators with High Blood-Brain Barrier Permeability: a Pharmacokinetics Study in Healthy and Stroke Animals

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability.

Methods

A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice.

Results

Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains.

Conclusions

This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Nozohouri S, Sifat AE, Vaidya B, Abbruscato TJ. Novel approaches for the delivery of therapeutics in ischemic stroke. Drug Discov Today. 2020;25(3):535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol. 2019;316(1):C2–15.

    Article  CAS  PubMed  Google Scholar 

  3. Savitz SI, Baron JC, Fisher M, Consortium SX. Stroke treatment academic industry roundtable X: brain cytoprotection therapies in the reperfusion Era. Stroke 2019;50(4):1026-1031.

  4. Chapman SN, Mehndiratta P, Johansen MC, McMurry TL, Johnston KC, Southerland AM. Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke. Vasc Health Risk Manag. 2014;10:75–87.

    PubMed  PubMed Central  Google Scholar 

  5. Fisher M, Ratan R. New perspectives on developing acute stroke therapy. Ann Neurol. 2003;53(1):10–20.

    Article  PubMed  Google Scholar 

  6. Esfahani SH, Abbruscato TJ, Trippier PC, Karamyan VT. Small molecule neurolysin activators, potential multi-mechanism agents for ischemic stroke therapy. Expert Opin Ther Targets. 2022;26(5):401–4.

    Article  CAS  PubMed  Google Scholar 

  7. Shrimpton CN, Smith AI, Lew RA. Soluble metalloendopeptidases and neuroendocrine signaling. Endocr Rev. 2002;23(5):647–64.

    Article  CAS  PubMed  Google Scholar 

  8. Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, et al. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2012;287(1):114–122.

  9. Jayaraman S, Al Shoyaib A, Kocot J, Villalba H, Alamri FF, Rashid M, et al. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J Neurochem. 2020;153(1):120–37.

    Article  CAS  PubMed  Google Scholar 

  10. Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol. 2021;33(2): e12931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, et al. Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem. 2014;129(1):179–89.

    Article  CAS  PubMed  Google Scholar 

  12. Rashid M, Arumugam TV, Karamyan VT. Association of the novel non-AT1, non-AT2 angiotensin binding site with neuronal cell death. J Pharmacol Exp Ther. 2010;335(3):754–61.

    Article  CAS  PubMed  Google Scholar 

  13. Karamyan VT. The role of peptidase neurolysin in neuroprotection and neural repair after stroke. Neural Regen Res. 2021;16(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  14. Karamyan VT. Peptidase neurolysin is an endogenous cerebroprotective mechanism in acute neurodegenerative disorders. Med Hypotheses. 2019;131: 109309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rahman MS, Kumari S, Esfahani SH, Nozohouri S, Jayaraman S, Kinarivala N, et al. Discovery of first-in-class peptidomimetic neurolysin activators possessing enhanced brain penetration and stability. J Med Chem. 2021;64(17):12705–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nozohouri S, Esfahani SH, Noorani B, Patel D, Villalba H, Ghanwatkar Y, et al. In-vivo and ex-vivo brain uptake studies of peptidomimetic neurolysin activators in healthy and stroke animals. Pharm Res. 2022;39(7):1587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jayaraman S, Kocot J, Esfahani SH, Wangler NJ, Uyar A, Mechref Y, et al. Identification and characterization of two structurally related dipeptides that enhance catalytic efficiency of neurolysin. J Pharmacol Exp Ther. 2021;379(2):191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Archie SR, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, et al. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS. 2022;19(1):46. https://doi.org/10.1186/s12987-022-00339-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nozohouri S, Zhang Y, Albekairi TH, Vaidya B, Abbruscato TJ. Glutamate buffering capacity and blood-brain barrier protection of opioid receptor agonists biphalin and nociceptin. J Pharmacol Exp Ther. 2021;379(3):260–9.

    Article  CAS  PubMed  Google Scholar 

  20. Abbruscato TJ, Nozohouri S, Zhang Y, Trippier PC, Kumari S, Karamyan VT, et al. Pyridine-Piperazine-Based Scaffolds as Highly Potent and Selective Neurolysin Activators. U.S. Patent Application No. 63/501,273. United States of America. 05/10/2023.

  21. Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, Watanabe T, et al. Development of simplified in vitro P-glycoprotein substrate assay and in silico prediction models to evaluate transport potential of P-glycoprotein. Mol Pharm. 2019;16(5):1851–63.

    Article  CAS  PubMed  Google Scholar 

  22. Summerfield SG, Stevens AJ, Cutler L, del Carmen OM, Hammond B, Tang SP, et al. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J Pharmacol Exp Ther. 2006;316(3):1282–90.

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Levine SR, Winn HR. Targeting ischemic penumbra: part I - from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med. 2010;3(1):47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, et al. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke. 2020;51(10):3147–55.

    Article  PubMed  Google Scholar 

  25. De Saint-Hubert M, Prinsen K, Mortelmans L, Verbruggen A, Mottaghy FM. Molecular imaging of cell death. Methods. 2009;48(2):178–87.

    Article  PubMed  Google Scholar 

  26. Liu S, Levine SR, Winn HR. Targeting ischemic penumbra Part II: selective drug delivery using liposome technologies. J Exp Stroke Transl Med. 2011;4(1):16–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stanton JA, Williams EI, Betterton RD, Davis TP, Ronaldson PT. Targeting organic cation transporters at the blood-brain barrier to treat ischemic stroke in rats. Exp Neurol. 2022;357: 114181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, et al. Permeability of metformin across an in vitro blood-brain barrier model during normoxia and oxygen-glucose deprivation conditions: role of organic cation transporters (Octs). Pharmaceutics. 2023;15(5):1357. https://doi.org/10.3390/pharmaceutics15051357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albekairi TH, Vaidya B, Patel R, Nozohouri S, Villalba H, Zhang Y, et al. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics. 2019;11(9):467. https://doi.org/10.3390/pharmaceutics11090467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schinkel AH. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2–3):179–94.

    Article  CAS  PubMed  Google Scholar 

  31. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204(3):216–37.

    Article  CAS  PubMed  Google Scholar 

  32. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by NIH grant R01NS106879 to P.C.T., V.T.K., and T.J.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Abbruscato.

Ethics declarations

Conflict of Interest

The authors Y.Z., S.J., S.K., S.H.E., S.N., P.C.T., V.T.K., and T.J.A. have a U.S. Patent Application for compounds KS52 and KS73.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sharma, S., Jonnalagadda, S. et al. Discovery of the Next Generation of Non-peptidomimetic Neurolysin Activators with High Blood-Brain Barrier Permeability: a Pharmacokinetics Study in Healthy and Stroke Animals. Pharm Res 40, 2747–2758 (2023). https://doi.org/10.1007/s11095-023-03619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03619-5

Keywords

Navigation