Skip to main content

Advertisement

Log in

How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound’s distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin US. 2023;73:17–48.

    Google Scholar 

  2. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24:v1-95.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med US. 2005;352:987–96.

    CAS  Google Scholar 

  4. Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J Clin Oncol. 2022;40:492–516.

    CAS  PubMed  Google Scholar 

  5. Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw US. 2020;18:1537–70.

    Google Scholar 

  6. Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med. 2011;13:e17.

    PubMed  PubMed Central  Google Scholar 

  7. Lassman AB, Pugh SL, Gilbert MR, Aldape KD, Geinoz S, Beumer JH, et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015;17:992–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lagas JS, van Waterschoot RAB, van Tilburg VACJ, Hillebrand MJ, Lankheet N, Rosing H, et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res an Off J Am Assoc Cancer Res US. 2009;15:2344–51.

    CAS  Google Scholar 

  9. Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, Elmquist WF. P-glycoprotein and Breast Cancer Resistance Protein Influence Brain Distribution of Dasatinib. J Pharmacol Exp Ther. 2009;330:956–63.

    CAS  PubMed  Google Scholar 

  10. Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, et al. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model. Mol Cancer Ther. 2016;15:819–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Phillips AC, Boghaert ER, Vaidya KS, Mitten MJ, Norvell S, Falls HD, et al. ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope. Mol Cancer Ther. 2016;15:661–9.

    CAS  PubMed  Google Scholar 

  12. Lassman AB, Van Den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski NA, et al. Efficacy analysis of ABT-414 with or without temozolomide (TMZ) in patients (pts) with EGFR-amplified, recurrent glioblastoma (rGBM) from a multicenter, international phase I clinical trial. J Clin Oncol. 2017;35:2003.

    Google Scholar 

  13. Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel JS, et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020;22:684–93.

    PubMed  Google Scholar 

  14. Lassman AB, Pugh SL, Wang TJC, Aldape K, Gan HK, Preusser M, et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: A phase III randomized clinical trial. Neuro Oncol. 2023;25:339–50.

    CAS  PubMed  Google Scholar 

  15. Marin B-M, Porath KA, Jain S, Kim M, Conage-Pough JE, Oh J-H, et al. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol England. 2021;23:2042–53.

    CAS  Google Scholar 

  16. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev US. 2010;23:858–83.

    CAS  Google Scholar 

  17. Hosoya K, Tachikawa M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol Japan. 2011;15:478–85.

    CAS  Google Scholar 

  18. Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS J US. 2017;19:1317–31.

    Google Scholar 

  19. Huttunen KM, Terasaki T, Urtti A, Montaser AB, Uchida Y. Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharm Res. 2022;39:1363–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi H, Suzuki M, Goto R, Tezuka K, Fuchs H, Ishiguro N, et al. Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs. Pharm Res US. 2022;39:1393–413.

    CAS  Google Scholar 

  21. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–49.

    CAS  PubMed  Google Scholar 

  22. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017;96:17–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luissint A-C, Artus C, Glacial F, Ganeshamoorthy K, Couraud P-O. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9:23.

    PubMed  PubMed Central  Google Scholar 

  25. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17:69.

    PubMed  PubMed Central  Google Scholar 

  26. Ohtsuki S, Terasaki T. Contribution of Carrier-Mediated Transport Systems to the Blood-Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development. Pharm Res. 2007;24:1745–58.

    CAS  PubMed  Google Scholar 

  27. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    CAS  PubMed  Google Scholar 

  28. Griffith JI, Rathi S, Zhang W, Zhang W, Drewes LR, Sarkaria JN, et al. Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics. 2020;12:1205.

  29. Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, et al. The influence of the blood–brain barrier in the treatment of brain tumours. J Intern Med. 2022;292:3–30.

    PubMed  Google Scholar 

  30. Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol Neurobiol. 2020;57:2461–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang W, Talele S, Sarkaria JN, Elmquist WF. Changes in the vasculature of human brain tumors: Implications for treatment. Neuro Oncol. 2021;23:1995–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

  33. Lyle LT, Lockman PR, Adkins CE, Mohammad AS, Sechrest E, Hua E, et al. Alterations in Pericyte Subpopulations are Associated with Elevated Blood-Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer. Clin Cancer Res. 2016;22:5287.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72:262–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gril B, Paranjape AN, Woditschka S, Hua E, Dolan EL, Hanson J, et al. Reactive astrocytic S1P3 signaling modulates the blood–tumor barrier in brain metastases. Nat Commun 2018;9:2705.

  36. Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery. 2017;81:397–415.

    PubMed  PubMed Central  Google Scholar 

  37. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20:184–91.

    CAS  PubMed  Google Scholar 

  38. Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13:279–89.

    PubMed  Google Scholar 

  39. Galldiks N, Law I, Pope WB, Arbizu J, Langen K-J. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. NeuroImage Clin. 2017;13:386–94.

    PubMed  Google Scholar 

  40. Griffith JI, Sarkaria JN, Elmquist WF. Efflux Limits Tumor Drug Delivery Despite Disrupted BBB. Trends Pharmacol Sci. 2021;42:426–8.

    CAS  PubMed  Google Scholar 

  41. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16:5664–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol. 2008;26:5603–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MCM, Kros JM, Carpentier AF, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol. 2009;27:1268–74.

    PubMed  PubMed Central  Google Scholar 

  44. Kim JE, Lee DH, Choi Y, Yoon DH, Kim SW, Suh C, et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer. 2009;65:351–4.

    PubMed  Google Scholar 

  45. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016;29:508–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. Acta Neuropathol Commun; 2021;9:142.

  47. Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012;29:770–81.

    CAS  PubMed  Google Scholar 

  48. Talele S, Zhang W, Burgenske DM, Kim M, Mohammad AS, Dragojevic S, et al. Brain Distribution of Berzosertib: An Ataxia Telangiectasia and Rad3-Related Protein Inhibitor for the Treatment of Glioblastoma. J Pharmacol Exp Ther. 2021;379:343–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Talele S, Zhang W, Oh JH, Burgenske DM, Mladek AC, Dragojevic S, et al. Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. J Pharmacol Exp Ther. 2022;381:217–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Talele S, Zhang W, Chen J, Gupta SK, Burgenske DM, Sarkaria JN, et al. Central Nervous System Distribution of the Ataxia-Telangiectasia Mutated Kinase Inhibitor AZD1390: Implications for the Treatment of Brain Tumors. J Pharmacol Exp Ther. 2022;383:91–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gampa G, Kenchappa RS, Mohammad AS, Parrish KE, Kim M, Crish JF, et al. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Sci Rep. 2020;10:6524.

  52. Gampa G. Improving the Delivery of Novel Molecularly-targeted Therapies for the Treatment of Primary and Metastatic Brain Tumors. ProQuest Diss. Theses. University of Minnesota; 2019.

  53. Gampa G, Kim M, Cook-Rostie N, Laramy JK, Sarkaria JN, Paradiso L, et al. Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metab Dispos. 2018;46:658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ntshangase S, Mdanda S, Naicker T, Kruger HG, Baijnath S, Govender T. Spatial distribution of elvitegravir and tenofovir in rat brain tissue: Application of matrix-assisted laser desorption/ionization mass spectrometry imaging and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2019;33:1643–51.

    CAS  PubMed  Google Scholar 

  55. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–62.

    CAS  PubMed  Google Scholar 

  56. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, et al. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 1992;51:1427–37.

    CAS  PubMed  Google Scholar 

  58. Tatsuta T, Naito M, Oh-hara T, Sugawara I, Tsuruo T. Functional involvement of P-glycoprotein in blood-brain barrier. J Biol Chem. 1992;267:20383–91.

    CAS  PubMed  Google Scholar 

  59. Sugawara I, Hamada H, Tsuruo T, Mori S. Specialized localization of P-glycoprotein recognized by MRK 16 monoclonal antibody in endothelial cells of the brain and the spinal cord. Jpn J Cancer Res. 1990;81:727–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schlachetzki F, Pardridge WM. P-glycoprotein and caveolin-1α in endothelium and astrocytes of primate brain. Neuroreport. 2003;14:2041–6.

  61. Bendayan R, Ronaldson PT, Gingras D, Bendayan M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem. 2006;54:1159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6.

    CAS  PubMed  Google Scholar 

  63. Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA. 1999;96:3900–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–4.

    CAS  PubMed  Google Scholar 

  65. Sodani K, Patel A, Kathawala RJ, Chen Z-S. Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer. 2012;31:58–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Han H, Elmquist WF, Miller DW. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res. 2000;876:148–53.

    CAS  PubMed  Google Scholar 

  67. Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma Membrane Localization of Multidrug Resistance-Associated Protein Homologs in Brain Capillary Endothelial Cells. J Pharmacol Exp Ther. 2004;311:449 LP – 55.

    Google Scholar 

  68. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci. 1998;95:15665–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport. 2002;13:2059–63.

  70. Eisenblätter T, Hüwel S, Galla H-J. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood–brain barrier. Brain Res. 2003;971:221–31.

    PubMed  Google Scholar 

  71. Aronica E, Gorter JA, Redeker S, Van Vliet EA, Ramkema M, Scheffer GL, et al. Localization of Breast Cancer Resistance Protein (BCRP) in Microvessel Endothelium of Human Control and Epileptic Brain. Epilepsia. 2005;46:849–57.

    CAS  PubMed  Google Scholar 

  72. Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF. Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab Dispos. 2012;40:1164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Talele S, Zhang W, Burgenske DM, Kim M, Mohammad AS, Dragojevic S, et al. Brain Distribution of Berzosertib: An Ataxia Telangiectasia and Rad3-Related Protein Inhibitor for the Treatment of Glioblastoma. J Pharmacol Exp Ther. 2021;379:343 LP – 357.

    Google Scholar 

  74. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336:223–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gampa G, Kim M, Cook-Rostie N, Laramy JK, Sarkaria JN, Paradiso L, et al. Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metab Dispos United States. 2018;46:658–66.

    CAS  Google Scholar 

  76. Laramy JK, Kim M, Parrish KE, Sarkaria JN, Elmquist WF. Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier. J Pharmacol Exp Ther United States. 2018;365:249–61.

    CAS  Google Scholar 

  77. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux Transporters at the Blood-Brain Barrier Limit Delivery and Efficacy of Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib (PD-0332991) in an Orthotopic Brain Tumor Model. J Pharmacol Exp Ther. 2015;355:264.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang Y-S, Hosoya K-I, et al. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab. 2003;23:432–40.

    CAS  PubMed  Google Scholar 

  79. Kikuchi R, Kusuhara H, Sugiyama D, Sugiyama Y. Contribution of Organic Anion Transporter 3 (Slc22a8) to the Elimination of p-Aminohippuric Acid and Benzylpenicillin across the Blood-Brain Barrier. J Pharmacol Exp Ther. 2003;306:51–8.

    CAS  PubMed  Google Scholar 

  80. Asaba H, Hosoya K, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, et al. Blood—Brain Barrier Is Involved in the Efflux Transport of a Neuroactive Steroid, Dehydroepiandrosterone Sulfate, via Organic Anion Transporting Polypeptide 2. J Neurochem. 2000;75:1907–16.

    CAS  PubMed  Google Scholar 

  81. Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, et al. Characterization of the Efflux Transport of 17β-Estradiol-d-17β-glucuronide from the Brain across the Blood-Brain Barrier. J Pharmacol Exp Ther. 2001;298:316–22.

    CAS  PubMed  Google Scholar 

  82. Fricker G, Miller DS. Modulation of Drug Transporters at the Blood-Brain Barrier. Pharmacology. 2004;70:169–76.

    CAS  PubMed  Google Scholar 

  83. Kubo Y, Ohtsuki S, Uchida Y, Terasaki T. Quantitative Determination of Luminal and Abluminal Membrane Distributions of Transporters in Porcine Brain Capillaries by Plasma Membrane Fractionation and Quantitative Targeted Proteomics. J Pharm Sci. 2015;104:3060–8.

    CAS  PubMed  Google Scholar 

  84. Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and Quantitative Proteomic Analysis of Transporters and Drug Metabolizing Enzymes in Freshly Isolated Human Brain Microvessels. Mol Pharm. 2011;8:1332–41.

    CAS  PubMed  Google Scholar 

  85. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117:333–45.

    CAS  PubMed  Google Scholar 

  86. Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, et al. Comparison of Absolute Protein Abundances of Transporters and Receptors among Blood-Brain Barriers at Different Cerebral Regions and the Blood-Spinal Cord Barrier in Humans and Rats. Mol Pharm American Chemical Society. 2020;17:2006–20.

    CAS  Google Scholar 

  87. Bao X, Wu J, Xie Y, Kim S, Michelhaugh S, Jiang J, et al. Protein Expression and Functional Relevance of Efflux and Uptake Drug Transporters at the Blood-Brain Barrier of Human Brain and Glioblastoma. Clin Pharmacol Ther Nature Publishing Group. 2020;107:1116–27.

    CAS  Google Scholar 

  88. Schaffenrath J, Wyss T, He L, Rushing EJ, Delorenzi M, Vasella F, et al. Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling. Neuro Oncol. 2021;23:2095–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chaves C, Declèves X, Taghi M, Menet MC, Lacombe J, Varlet P, et al. Characterization of the blood–brain barrier integrity and the brain transport of SN-38 in an orthotopic xenograft rat model of diffuse intrinsic pontine glioma. Pharmaceutics. 2020;12:399.

  90. Mohri M, Nitta H, Yamashita J. Expression of multidrug resistance-associated protein (MRP) in human gliomas. J. Neurooncol. 2000;49:105–15.

  91. Jin Y, Bin ZQ, Qiang H, Liang C, Hua C, Jun D, et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma. J Cancer Res Clin Oncol. 2009;135:1369–76.

    CAS  PubMed  Google Scholar 

  92. Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, et al. Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma. Cancer Invest. 2009;27:901–8.

    CAS  PubMed  Google Scholar 

  93. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2− Cancer Cells Are Similarly Tumorigenic. Cancer Res. 2005;65:6207–19.

    CAS  PubMed  Google Scholar 

  94. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang S-M, Liu X, et al. Why Clinical Modulation of Efflux Transport at the Human Blood-Brain Barrier Is Unlikely: The ITC Evidence-Based Position. Clin Pharmacol Ther. 2013;94:80–94.

    CAS  PubMed  Google Scholar 

  95. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50.

    CAS  PubMed  Google Scholar 

  96. Gampa G, Talele S, Kim M, Mohammad A, Griffith J, Elmquist WF. Chapter 9 - Influence of transporters in treating cancers in the CNS. In: Sosnik A, Bendayan RBT-DEP in CRPFMR and C to PIS in C, editors. Cancer Sensitizing Agents for Chemotherapy. Academic; 2020. p. 277–301.

  97. Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol. 2022;273:121–50.

    CAS  PubMed  Google Scholar 

  98. Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, et al. Unbound Brain-to-Plasma Partition Coefficient, Kp, uu, brain-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res. 2022;39:1321–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, et al. Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia US. 2018;20:710–20.

    Google Scholar 

  100. Durant ST, Zheng L, Wang Y, Chen K, Zhang L, Zhang T, et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv. 2018;4:eaat1719.

    PubMed  PubMed Central  Google Scholar 

  101. Tuma AM, Zhong W, Liu L, Burgenske DM, Carlson BL, Bakken KK, et al. Abstract 3305: WSD-0628, a novel brain penetrant ATM inhibitor, radiosensitizes GBM and melanoma patient derived xenografts. Cancer Res. 2022;82:3305.

    Google Scholar 

  102. Xiong Y, Guo Y, Liu Y, Wang H, Gong W, Liu Y, et al. Pamiparib is a potent and selective PARP inhibitor with unique potential for the treatment of brain tumor. Neoplasia. 2020;22:431–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim M, Laramy JK, Gampa G, Parrish KE, Brundage R, Sarkaria JN, et al. Brain Distributional Kinetics of a Novel MDM2 Inhibitor SAR405838: Implications for Use in Brain Tumor Therapy. Drug Metab Dispos Drug Metab Dispos. 2019;47:1403–14.

    CAS  PubMed  Google Scholar 

  104. Zhang W, Vaubel, RA, Oh J-H, Mladek AC, Talele S, Zhang W, Waller KL, Burgenske DM, Sarkaria JN, Elmquist, WF. Delivery versus potency in treating brain tumors: BI-907828, a MDM2-p53 antagonist with limited BBB penetration but significant in vivo efficacy in glioblastoma. 2023;(In revision).

  105. Kim M, Laramy JK, Mohammad AS, Talele S, Fisher J, Sarkaria JN, et al. Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and Abcb1/Abcg2-Deficient Mice. Drug Metab Dispos. 2019;47:393–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Laramy JK, Kim M, Gupta SK, Parrish KE, Zhang S, Bakken KK, et al. Heterogeneous binding and CNS distribution of the multi-targeted kinase inhibitor ponatinib restrict orthotopic efficacy in a patient-derived xenograft model of glioblastoma. J Pharmacol Exp Ther. 2017;363:136–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Salphati L, Shahidi-Latham S, Quiason C, Barck K, Nishimura M, Alicke B, et al. Distribution of the Phosphatidylinositol 3-Kinase Inhibitors Pictilisib (GDC-0941) and GNE-317 in U87 and GS2 Intracranial Glioblastoma Models—Assessment by Matrix-Assisted Laser Desorption Ionization Imaging. Drug Metab Dispos. 2014;42:1110–6.

    PubMed  Google Scholar 

  108. Salphati L, Alicke B, Heffron TP, Shahidi-Latham S, Nishimura M, Cao T, et al. Brain Distribution and Efficacy of the Brain Penetrant PI3K Inhibitor GDC-0084 in Orthotopic Mouse Models of Human Glioblastoma. Drug Metab Dispos US. 2016;44:1881–9.

    CAS  Google Scholar 

  109. Gampa G, Kim M, Mohammad AS, Parrish KE, Mladek AC, Sarkaria JN, et al. Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther. 2019;368:446–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Oh J-H, Power EA, Zhang W, Daniels DJ, Elmquist WF. Murine Central Nervous System and Bone Marrow Distribution of the Aurora A Kinase Inhibitor Alisertib: Pharmacokinetics and Exposure at the Sites of Efficacy and Toxicity. J Pharmacol Exp Ther. 2022;383:44–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft. Drug Metab Dispos US. 2015;43:1360–71.

    CAS  Google Scholar 

  112. Chaney SG, Sancar A. DNA Repair: Enzymatic Mechanisms and Relevance to Drug Response. JNCI J Natl Cancer Inst. 1996;88:1346–60.

    CAS  PubMed  Google Scholar 

  113. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    CAS  PubMed  Google Scholar 

  114. Poon MTC, Bruce M, Simpson JE, Hannan CJ, Brennan PM. Temozolomide sensitivity of malignant glioma cell lines - a systematic review assessing consistencies between in vitro studies. BMC Cancer England. 2021;21:1240.

    CAS  Google Scholar 

  115. Kim M, Ma DJ, Calligaris D, Zhang S, Feathers RW, Vaubel RA, et al. Efficacy of the MDM2 inhibitor SAR405838 in glioblastoma is limited by poor distribution across the blood–brain barrier. Mol Cancer Ther. 2018;17:1893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Power EA, Rechberger JS, Zhang L, Oh J-H, Anderson JB, Nesvick CL, et al. Overcoming translational barriers in H3K27-altered diffuse midline glioma: Increasing the drug-tumor residence time. Neuro-Oncol Adv. 2023;5:vdad033.

    Google Scholar 

  117. Kurokawa C, Geekiyanage H, Allen C, Iankov I, Schroeder M, Carlson B, et al. Alisertib demonstrates significant antitumor activity in bevacizumab resistant, patient derived orthotopic models of glioblastoma. J Neurooncol US. 2017;131:41–8.

    CAS  Google Scholar 

  118. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bindra RS, Chalmers AJ, Evans S, Dewhirst M. GBM radiosensitizers: dead in the water … or just the beginning? J Neurooncol Springer US. 2017;134:513–21.

    CAS  Google Scholar 

  120. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    CAS  PubMed  Google Scholar 

Download references

Funding

National Institutes of Health National Cancer Institute Grant U19-CA264362, U01-CA227954, National Brain Tumor Society AWD0006946 / 21-004061. The first author was partially supported by the Ronald J. Sawchuk Fellowship in Pharmacokinetics, Rory P. Remmel and Cheryl L. Zimmerman Fellowship in Drug Metabolism and Pharmacokinetics, and Bighley Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Elmquist.

Ethics declarations

Conflict of Interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor David E. Smith on his retirement after more than 40 years of groundbreaking scholarship at the University of Michigan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Oh, JH., Zhang, W. et al. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 40, 2731–2746 (2023). https://doi.org/10.1007/s11095-023-03574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03574-1

Keywords

Navigation