Skip to main content

Advertisement

Log in

Evaluation of Encequidar as An Intestinal P-gp and BCRP Specific Inhibitor to Assess the Role of Intestinal P-gp and BCRP in Drug-Drug Interactions

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition.

Methods

We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP.

Results

ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold).

Conclusions

ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Upon request, and subject to review, Bristol Myers Squibb Company will provide the data that support the findings of this study.

Abbreviations

A-to-B:

Apical to basolateral direction

AMP:

Adenosine 5’-monophosphate

ATP:

Adenosine 5’-triphosphate

AUC :

Area under the plasma concentration–time curve

B-to-A:

Basolateral to apical direction

BCRP:

Breast cancer resistance protein

C max :

Total maximal concentration in plasma

C max,u :

Unbound maximal concentration in plasma

DDI:

Drug-drug interaction

HBSS:

Hanks’ balanced salt solution

ECD:

Encequidar

ELD:

Elacridar

ER:

Efflux ratio

FDA:

The United States Food and Drug Administration

IC 50 :

Half-maximal inhibitory concentration

I gut :

Maximum expected concentration in the intestinal lumen estimated as dose/250 mL

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

MDCK:

Madin-Darby canine kidney cell

MDR:

Multidrug resistance protein

MRP:

Multidrug resistance-associated protein

P-gp:

P-glycoprotein

PTX:

Paclitaxel

SFZ:

Sulfasalazine

SRM:

Selective reaction monitoring

TLN:

Talinolol

T max :

Time when peak plasma concentration occurs

References

  1. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem Biophys Acta. 1976;455(1):152–62.

    Article  CAS  PubMed  Google Scholar 

  2. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.

    CAS  PubMed  Google Scholar 

  5. Drozdzik M, Busch D, Lapczuk J, Muller J, Ostrowski M, Kurzawski M, et al. Protein Abundance of Clinically Relevant Drug Transporters in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin Pharmacol Ther. 2019;105(5):1204–12.

    Article  CAS  PubMed  Google Scholar 

  6. Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm & Drug Disp. 2023;44(1):7–25.

    Article  CAS  Google Scholar 

  7. Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit. 2000;22(1):137–40.

    Article  CAS  PubMed  Google Scholar 

  8. Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  9. Lund M, Petersen TS, Dalhoff KP. Clinical Implications of P-Glycoprotein Modulation in Drug-Drug Interactions. Drugs. 2017;77(8):859–83.

    Article  CAS  PubMed  Google Scholar 

  10. Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos Biol Fate Chem. 2015;43(4):490–509.

    Article  CAS  PubMed  Google Scholar 

  11. Taskar KS, Yang X, Neuhoff S, Patel M, Yoshida K, Paine MF, et al. Clinical Relevance of Hepatic and Renal P-gp/BCRP Inhibition of Drugs: An International Transporter Consortium Perspective. Clin Pharmacol Ther. 2022;112(3):573–92.

    Article  CAS  PubMed  Google Scholar 

  12. Kwak JO, Lee SH, Lee GS, Kim MS, Ahn YG, Lee JH, et al. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur J Pharmacol. 2010;627(1–3):92–8.

    Article  CAS  PubMed  Google Scholar 

  13. Smolinski MP, Urgaonkar S, Pitzonka L, Cutler M, Lee G, Suh KH, et al. Discovery of Encequidar, First-in-Class Intestine Specific P-glycoprotein Inhibitor. J Med Chem. 2021;64(7):3677–93.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson C, Hung T, Segelov E, Barlow P, Prenen H, McLaren B, et al. Oral paclitaxel with encequidar compared to intravenous paclitaxel in patients with advanced cancer: A randomised crossover pharmacokinetic study. Br J Clin Pharmacol. 2021;87(12):4670–80.

    Article  CAS  PubMed  Google Scholar 

  15. Rautio J, Humphreys JE, Webster LO, Balakrishnan A, Keogh JP, Kunta JR, et al. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos Biol Fate Chem. 2006;34(5):786–92.

    Article  CAS  PubMed  Google Scholar 

  16. Kim TE, Lee H, Lim KS, Lee S, Yoon SH, Park KM, et al. Effects of HM30181, a P-glycoprotein inhibitor, on the pharmacokinetics and pharmacodynamics of loperamide in healthy volunteers. Br J Clin Pharmacol. 2014;78(3):556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schenck-Gustafsson K, Dahlqvist R. Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br J Clin Pharmacol. 1981;11(2):181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cha YJ, Lee H, Gu N, Kim TE, Lim KS, Yoon SH, et al. Sustained Increase in the Oral Bioavailability of Loperamide after a Single Oral Dose of HM30181, a P-glycoprotein Inhibitor, in Healthy Male Participants. Basic Clin Pharmacol Toxicol. 2013;113(6):419–24.

    Article  CAS  PubMed  Google Scholar 

  19. Rugo HS, Umanzor GA, Barrios FJ, Vasallo RH, Chivalan MA, Bejarano S, et al. Open-Label, Randomized, Multicenter, Phase III Study Comparing Oral Paclitaxel Plus Encequidar Versus Intravenous Paclitaxel in Patients With Metastatic Breast Cancer. J Clinic Oncol Offic J Am Soc Clin Oncol. 2023;41(1):65–74.

    Article  CAS  Google Scholar 

  20. Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol. 2009;5(7):703–29.

    Article  CAS  PubMed  Google Scholar 

  21. Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos Biol Fate Chem. 2012;40(9):1825–33.

    Article  CAS  PubMed  Google Scholar 

  22. Mease K, Sane R, Podila L, Taub ME. Differential selectivity of efflux transporter inhibitors in Caco-2 and MDCK-MDR1 monolayers: a strategy to assess the interaction of a new chemical entity with P-gp, BCRP, and MRP2. J Pharm Sci. 2012;101(5):1888–97.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Strab R, Kardos P, Ferguson C, Li J, Owen A, et al. Application and limitation of inhibitors in drug-transporter interactions studies. Int J Pharm. 2008;356(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kosa RE, Lazzaro S, Bi YA, Tierney B, Gates D, Modi S, et al. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey. Drug Metab Dispos Biol Fate Chem. 2018;46(8):1179–89.

    Article  CAS  PubMed  Google Scholar 

  25. Karibe T, Imaoka T, Abe K, Ando O. Curcumin as an In Vivo Selective Intestinal Breast Cancer Resistance Protein Inhibitor in Cynomolgus Monkeys. Drug Metab Dispos Biol Fate Chem. 2018;46(5):667–79.

    Article  CAS  PubMed  Google Scholar 

  26. Imai S, Arai T, Yamada T, Niwa M. Improved In Vitro-In Vivo Correlation by Using the Unbound-Fraction-Adjusted IC(50) for Breast Cancer Resistance Protein Inhibition. Pharm Res. 2020;37(12):230.

    Article  CAS  PubMed  Google Scholar 

  27. Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers. Drug Metab Dispos Biol Fate Chem. 2020;48(6):491–8.

    Article  CAS  PubMed  Google Scholar 

  28. Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70.

    Article  CAS  PubMed  Google Scholar 

  29. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9(3):237–52.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Lobato L, Real R, Prieto JG, Alvarez AI, Merino G. Differential inhibition of murine Bcrp1/Abcg2 and human BCRP/ABCG2 by the mycotoxin fumitremorgin C. Eur J Pharmacol. 2010;644(1–3):41–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ma WW, Li JJ, Azad NS, Lam ET, Diamond JR, Dy GK, et al. A phase Ib study of Oraxol (oral paclitaxel and encequidar) in patients with advanced malignancies. Cancer Chemother Pharmacol. 2022;90(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  32. Zolnerciks JK, Booth-Genthe CL, Gupta A, Harris J, Unadkat JD. Substrate- and species-dependent inhibition of P-glycoprotein-mediated transport: implications for predicting in vivo drug interactions. J Pharm Sci. 2011;100(8):3055–61.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuyama N, Katoh M, Takeuchi T, Yoshitomi S, Higuchi T, Asashi S, et al. Species differences of inhibitory effects on P-glycoprotein-mediated drug transport. J Pharm Sci. 2007;96(6):1609–18.

    Article  CAS  PubMed  Google Scholar 

  34. Urakami Y, Okuda M, Saito H, Inui K. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett. 2000;473(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  35. Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, et al. Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett. 1999;461(3):339–42.

    Article  CAS  PubMed  Google Scholar 

  36. Madla CM, Qin Y, Gavins FKH, Liu J, Dou L, Orlu M, et al. Sex Differences in Intestinal P-Glycoprotein Expression in Wistar versus Sprague Dawley Rats. Pharmaceutics. 2022;14(5):1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsson P, Pedersen JM, Norinder U, Bergstrom CA, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26(8):1816–31.

    Article  CAS  PubMed  Google Scholar 

  38. Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, et al. Transporters in Drug Development: International Transporter Consortium Update on Emerging Transporters of Clinical Importance. Clin Pharmacol Ther. 2022;112(3):485–500.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yueping Zhang (Bristol Myers Squibb Company) for help conducting some MDCK-hMDR1 and MDCK-hBCRP experiments.

Funding

This study was sponsored by Bristol Myers Squibb Company.

Author information

Authors and Affiliations

Authors

Contributions

Design of work: Chu, Panfen, Fancher, Shah, Xue, Sinz, and Shen.

Conduction of experiments: Chu, Panfen, Wang, Marino, Chen, Landage, Patil, and Desai.

Analysis and interpretation of data: Chu, Panfen, Marino, Sinz, and Shen.

Drafting and revising work: Chu, Panfen, Landage, Sinz, and Shen.

Corresponding author

Correspondence to Hong Shen.

Ethics declarations

Conflict of Interest

All authors are employees of either Bristol Myers Squibb Company or Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 154 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Panfen, E., Wang, L. et al. Evaluation of Encequidar as An Intestinal P-gp and BCRP Specific Inhibitor to Assess the Role of Intestinal P-gp and BCRP in Drug-Drug Interactions. Pharm Res 40, 2567–2584 (2023). https://doi.org/10.1007/s11095-023-03563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03563-4

Keywords

Navigation