Skip to main content
Log in

Advanced Solid Formulations For Vulvovaginal Candidiasis

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Vulvovaginal candidiasis (VVC) is an opportunistic and endogenous infection caused by a fungus of the Candida genus, which can cause pruritus, dysuria, vulvar edema, fissures and maceration of the vulva. The treatment of vaginal candidiasis is carried out mainly by antifungal agents of azole and polyene classes; however, fungal resistance cases have been often observed. For this reason, new therapeutic agents such as essential oils, probiotics and antimicrobial peptides are being investigated, which can be combined with conventional drugs. Local administration of antimicrobials has also been considered to allow greater control of drug delivery and reduce or avoid undesirable systemic adverse effects. Conventional dosage forms such as creams and ointments result in reduced residence time in the mucosa and non-sustained and variable drug delivery. Therefore, advanced solid formulations such as intravaginal rings, vaginal films, sponges and nanofibers have been purposed. In these systems, polymers in different ratios are combined aiming to achieve a specific drug release profile and high mucoadhesion. Overall, a more porous matrix structure leads to a higher rate of drug release and mucoadhesion. The advantages, limitations and technological aspects of each dosage form are discussed in detail in this review.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

AMPs:

Antimicrobial peptides

BN:

Butoconazole nitrate

BZY:

Benzydamine

CA:

Chitosan ascorbate

CB:

Carbopol 971NF

CFU:

Colony forming units

CH:

Chitosan

CTZ:

Clotrimazole

EB:

Elongation at break

ECN:

Econazole nitrate

EPS:

Extracellular polymeric substances

FD4:

Fluoresceine isothiocyanate dextran

FLZ:

Fluconazole

HAS:

Sodium hyaluronate/lysine acetate

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methylcellulose

IPM:

Isopropyl myristate

IVRs:

Intravaginal rings

KLV:

Killing log values

MFC:

Minimum fungicidal concentration

MIC:

Minimum inhibitory concentration

NP:

Nanoparticle

PEG:

Polyethylene glycol

PG:

Propylene glycol

PLGA:

Poly(lactic-co-glycolic acid)

PN:

Polymeric nanofibers

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

RVVC:

Recurrent vulvovaginal candidiasis

SAP:

Secreted aspartyl proteinase

SD:

Solid dispersions

SEM:

Scanning electron microscopy

SVF:

Simulated vaginal fluid

TCZ:

Tioconazole

TPP:

Tripolyphosphate

TPU:

Thermoplastic polyurethane

TS:

Tensile strength

TTO:

Tea tree oil

VVC:

Vulvovaginal candidiasis

References

  1. Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71.

    Article  PubMed  Google Scholar 

  2. Farage MA, Miller KW, Sobel JD. Dynamics of the vaginal ecosystem-hormonal influences. Infectious Diseases: Research and Treatment. 2010;3:1–15.

    Google Scholar 

  3. Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol. 2016;42:905–27.

    Article  PubMed  Google Scholar 

  4. Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Delivery. 2016;23:550–63.

    Article  CAS  PubMed  Google Scholar 

  5. Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214:15–21. https://doi.org/10.1016/j.ajog.2015.06.067.

    Article  PubMed  Google Scholar 

  6. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis. 2018;18:e339–47. https://doi.org/10.1016/S1473-3099(18)30103-8.

    Article  PubMed  Google Scholar 

  7. Wang FJ, Zhang D, Liu ZH, Wu WX, Bai HH, Dong HY. Species distribution and in vitro antifungal susceptibility of vulvovaginal Candida isolates in China. Chin Med J. 2016;129:1161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sardi J de CO, Silva DR, Anibal PC, Baldin JJCM de C, Ramalho SR, Rosalen PL, et al. Vulvovaginal candidiasis: epidemiology and risk factors, pathogenesis, resistance, and new therapeutic options. Current Fungal Infection Reports. 2021;15:32–40.

  9. Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends in Microbiology. 2001;9:327–35. Available from: http://tim.trends.com

  10. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:10–24.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48:3291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pontón J, Quindós G. Mechanisms of resistance to antifungal therapy. Med Clin. 2006;126:56–60. https://doi.org/10.1157/13097528.

    Article  Google Scholar 

  13. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics. 2020;9:1–19.

    Article  Google Scholar 

  14. Soares D, Lima E, Soares D, Silva N, Costa N, Faria F, et al. Candidíase vulvovaginal: uma revisão de literatura com abordagem para Candida albicans. 2018;25:28–34.

  15. Dovnik A, Golle A, Novak D, Arko D, Takač I. Treatment of vulvovaginal candidiasis: A review of the literature. Acta Dermatovenerologica Alpina, Pannonica et Adriatica. 2015;24:5–7.

    Article  PubMed  Google Scholar 

  16. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2015;62:e1-50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014;28:81–97.

    Article  PubMed  Google Scholar 

  18. Sawant B, Khan T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed Pharmacother. 2017;96:1478–90. https://doi.org/10.1016/j.biopha.2017.11.127.

    Article  CAS  PubMed  Google Scholar 

  19. Calvo NL, Svetaz LA, Alvarez VA, Quiroga AD, Lamas MC, Leonardi D. Chitosan-hydroxypropyl methylcellulose tioconazole films: a promising alternative dosage form for the treatment of vaginal candidiasis. Int J Pharm. 2019;556:181–91. https://doi.org/10.1016/j.ijpharm.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  20. Nematpour N, Moradipour P, Zangeneh MM, Arkan E, Abdoli M, Behbood L. The application of nanomaterial science in the formulation a novel antibiotic: assessment of the antifungal properties of mucoadhesive clotrimazole loaded nanofiber versus vaginal films. Mater Sci Eng, C. 2020;110:1–12. https://doi.org/10.1016/j.msec.2020.110635.

    Article  CAS  Google Scholar 

  21. Machado RM, Palmeira-de-oliveira A, Gaspar C, Martinez-de-oliveira J, Palmeira-de-oliveira R. Studies and methodologies on vaginal drug permeation. Adv Drug Deliv Rev. 2015;92:14–26. https://doi.org/10.1016/j.addr.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  22. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103:301–13.

    Article  CAS  PubMed  Google Scholar 

  23. Cunha-Reis C, Machado A, Barreiros L, Araújo F, Nunes R, Seabra V, et al. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release. 2016;243:43–53. https://doi.org/10.1016/j.jconrel.2016.09.020.

    Article  CAS  PubMed  Google Scholar 

  24. Mesquita L, Galante J, Nunes R, Sarmento B, Neves J. Pharmaceutical vehicles for vaginal and rectal administration of anti-HIV microbicide nanosystems. Pharmaceutics. 2019;11:1–20.

    Article  Google Scholar 

  25. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: Cellular responses and interactions. Immunol Rev. 2005;206:306–35.

    Article  PubMed  Google Scholar 

  26. van Burik JH, Magee PT. Aspects of fungal pathogenesis in humans. Annual Review of Microbiolog. 2001;55:743–72.

    Article  Google Scholar 

  27. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36:288–305.

    Article  CAS  PubMed  Google Scholar 

  28. Naglik JR, Richardson JP, Moyes DL. Candida albicans pathogenicity and epithelial immunity. PLoS Pathog. 2014;10:1–4.

    Article  Google Scholar 

  29. Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants - issues and prevention. Biomedical Materials. 2008;3:034003. https://doi.org/10.1088/1748-6041/3/3/034003

  30. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209.

    Article  CAS  PubMed  Google Scholar 

  31. Krishnasamy L, Rubini D, Senthilganesh J, Saikumar C, Kumaramanickavel G, Aruni AW, et al. Phylogenetic characterization of biofilm forming multidrug resistant Candida albicans and non albicans Candida causing vulvovaginal candidiasis. Gene Reports. 2020;19. https://doi.org/10.1016/j.genrep.2020.100644

  32. Rohan LC, Sassi AB. Vaginal drug delivery systems for HIV prevention. American Association of Pharmaceutical Scientists. 2009;11:78–87.

    CAS  Google Scholar 

  33. Baloglu E, Senyigit ZA, Karavana SY, Bernkop-schnürch A. Strategies to prolong the intravaginal residence time of drug delivery systems. J Pharm Pharmaceut Sci. 2009;12:312–36.

    CAS  Google Scholar 

  34. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57:1692–712.

    Article  CAS  PubMed  Google Scholar 

  35. Graff V. Human Anatomy. Knowledge Creation Diffusion Utilization. 2001.

  36. Costin G, Raabe HA, Priston R, Evans E, Curren RD. Vaginal irritation models: the current status of available alternative and in vitro tests. Altern Lab Anim. 2011;39:317–37.

    Article  CAS  PubMed  Google Scholar 

  37. Bulla R, de Seta F, Radillo O, Agostinis C, Durigutto P, Pellis V. Mannose-binding lectin is produced by vaginal epithelial cells and its level in the vaginal fluid is influenced by progesterone. Mol Immunol. 2010;48:281–6. https://doi.org/10.1016/j.molimm.2010.07.016.

    Article  CAS  PubMed  Google Scholar 

  38. Ashok V, Kumar R, Murali D. A review on vaginal route as a systemic drug delivery. Critical Review in Pharmaceutical Sciences. 2012;1:1–19.

    Google Scholar 

  39. Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92:39–52. https://doi.org/10.1016/j.addr.2015.02.001.

    Article  CAS  PubMed  Google Scholar 

  40. Pereira RRDA, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38:643–52.

    Article  CAS  Google Scholar 

  41. Iqbal Z, Dilnawaz F. Nanocarriers for vaginal drug delivery. Recent Pat Drug Delivery Formulation. 2019;13:3–15.

    Article  CAS  Google Scholar 

  42. Blaskewicz CD, Pudney J, Anderson DJ. Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 2011;85:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sassi AB, McCullough KD, Cost MR, Hillier SL, Rohan LC. Permeability of tritiated water through human cervical and vaginal tissue. J Pharm Sci. 2004;93:2009–16.

    Article  CAS  PubMed  Google Scholar 

  44. Squier CA, Mantz MJ, Schlievert PM, Davis CC. Porcine vagina ex vivo as a model for studying permeability and pathogenesis in mucosa. J Pharm Sci. 2008;97:9–21. https://doi.org/10.1002/jps.21077.

    Article  CAS  PubMed  Google Scholar 

  45. Gali Y, Delezay O, Brouwers J, Addad N, Augustijns P, Bourlet T, et al. In vitro evaluation of viability, integrity, and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrob Agents Chemother. 2010;54:5105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sofi HS, Abdal-hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives. Mater Sci Eng, C. 2020;111:1–20. https://doi.org/10.1016/j.msec.2020.110756.

    Article  CAS  Google Scholar 

  47. Gorodeski GI. Estrogen biphasic regulation of paracellular permeability of cultured human vaginal-cervical epithelia. J Clin Endocrinol Metab. 2001;86:4233–43.

    Article  CAS  PubMed  Google Scholar 

  48. Gorodeski G. Nitric oxide regulation of permeability in human cervical and vaginal epithelial cells and in human endothelial cells. Curr Pharm Des. 2003;9:411–8.

    Article  CAS  PubMed  Google Scholar 

  49. Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. Adv Drug Deliv Rev. 2015;92:105–22. https://doi.org/10.1016/j.addr.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  50. Felix TC, de Brito Röder DVD, dos Santos PR. Alternative and complementary therapies for vulvovaginal candidiasis. Folia Microbiologica Folia Microbiologica. 2019;64:133–41.

    Article  CAS  PubMed  Google Scholar 

  51. Dota KFD, Consolaro MEL, Svidzinski TIE, Bruschi ML. Antifungal activity of Brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evidence-Based Complementary and Alternative Medicine. 2011;1–8.

  52. Shahid Z, Sobel JD. Reduced fluconazole susceptibility of Candida albicans isolates in women with recurrent vulvovaginal candidiasis: effects of long-term fluconazole therapy. Diagn Microbiol Infect Dis. 2009;64:354–6. https://doi.org/10.1016/j.diagmicrobio.2009.03.021.

    Article  CAS  PubMed  Google Scholar 

  53. Sobel JD, Kapernick PS, Zervos M, Reed BD, Hooton T, Soper D, et al. Treatment of complicated Candida vaginitis: Comparison of single and sequential doses of fluconazole. Am J Obstet Gynecol. 2001;185:363–9.

    Article  CAS  PubMed  Google Scholar 

  54. Souza RO, Henrique de Lima T, Oréfice RL, de Freitas Araújo MG, de Lima Moura SA, Magalhães JT, et al. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers: an alternative therapy scheme for local treatment of vulvovaginal candidiasis. Journal of Pharmaceutical Sciences. 2018;107:2674–85.

  55. Alam MA, Ahmad FJ, Khan ZI, Khar RK, Ali M. Development and evaluation of acid-buffering bioadhesive vaginal tablet for mixed vaginal infections. AAPS PharmSciTech. 2007;8:1–8.

    Article  Google Scholar 

  56. Mishell DR, Lumkin ME. Contraceptive effect of varying dosages of progestogen in silastic vaginal rings. Fertil Steril. 1970;21:99–103.

    Article  PubMed  Google Scholar 

  57. Welsh NR, Malcolm RK, Devlin B, Boyd P. Dapivirine-releasing vaginal rings produced by plastic freeforming additive manufacturing. Int J Pharm. 2019;572:1–9. https://doi.org/10.1016/j.ijpharm.2019.118725.

    Article  CAS  Google Scholar 

  58. Notario-Pérez F, Cazorla-Luna R, Martín-Illana A, Galante J, Ruiz-Caro R, das Neves J, et al. Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. Journal of Controlled Release. 2020;327:477–99. https://doi.org/10.1016/j.jconrel.2020.08.032.

  59. Shaikh R, Raj Singh T, Garland M, Woolfson A, Donnelly R. Mucoadhesive drug delivery systems. Journal of Pharmacy and Bioallied Sciences. 2011. p. 89–100.

  60. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539:75–82. https://doi.org/10.1016/j.ijpharm.2018.01.036.

    Article  CAS  PubMed  Google Scholar 

  61. Tietz K, Klein S. In vitro methods for evaluating drug release of vaginal ring formulations- a critical review. Pharmaceutics. 2019;11:1–23.

    Article  Google Scholar 

  62. Verstraete G, Vandenbussche L, Kasmi S, Nuhn L, Brouckaert D, van Renterghem J, et al. Thermoplastic polyurethane-based intravaginal rings for prophylaxis and treatment of (recurrent) bacterial vaginosis. Int J Pharm. 2017;529:218–26. https://doi.org/10.1016/j.ijpharm.2017.06.076.

    Article  CAS  PubMed  Google Scholar 

  63. Rafiei F, Tabesh H, Farzad S, Farzaneh F, Rezaei M, Hosseinzade F, et al. Development of hormonal intravaginal rings: technology and challenges. Geburtshilfe Frauenheilkd. 2021;81:789–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malcolm RK, Boyd PJ, McCoy CF, Murphy DJ. Microbicide vaginal rings: technological challenges and clinical development. Adv Drug Deliv Rev. 2016;103:33–56. https://doi.org/10.1016/j.addr.2016.01.015.

    Article  CAS  PubMed  Google Scholar 

  65. Tiboni M, Campana R, Frangipani E, Casettari L. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm. 2021;596:1–8. https://doi.org/10.1016/j.ijpharm.2021.120290.

    Article  CAS  Google Scholar 

  66. Gunawardana M, Baum MM, Smith TJ, Moss JA. An intravaginal ring for the sustained delivery of antibodies. J Pharm Sci. 2014;103:3611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patel SK, Rohan LC. On-demand microbicide products: design matters. Drug Deliv Transl Res. 2017;7:775–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Antimisiaris SG, Mourtas S. Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev. 2015;92:123–45. https://doi.org/10.1016/j.addr.2015.03.015.

    Article  CAS  PubMed  Google Scholar 

  69. Neves J, Sarmento B. Antiretroviral drug-loaded nanoparticles-in-films: a new option for developing vaginal microbicides? Expert Opin Drug Deliv. 2017;14:449–52. https://doi.org/10.1080/17425247.2017.1270938.

    Article  PubMed  Google Scholar 

  70. Jalil A, Asim MH, Le NMN, Laffleur F, Matuszczak B, Tribus M, et al. S-protected gellan gum: decisive approach towards mucoadhesive antimicrobial vaginal films. Int J Biol Macromol. 2019;130:148–57.

    Article  CAS  PubMed  Google Scholar 

  71. Rosenberg ZF, Devlin B. Future strategies in microbicide development. Best Pract Res Clin Obstet Gynaecol. 2012;26:503–13. https://doi.org/10.1016/j.bpobgyn.2012.02.001.

    Article  PubMed  Google Scholar 

  72. Bassi P, Kaur G. Bioadhesive vaginal drug delivery of nystatin using a derivatized polymer: Development and characterization. Eur J Pharm Biopharm. 2015;96:173–84. https://doi.org/10.1016/j.ejpb.2015.07.018.

    Article  CAS  PubMed  Google Scholar 

  73. Mauck CK, Baker JM, Barr SP, Abercrombie TJ, Archer DF. A phase I comparative study of contraceptive vaginal films containing benzalkonium chloride and nonoxynol-9 postcoital testing and colposcopy. Contraception. 1997;56:89–96.

    Article  CAS  PubMed  Google Scholar 

  74. Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Bedoya LM, Peña J, et al. Development of mucoadhesive vaginal films based on HPMC and zein as novel formulations to prevent sexual transmission of HIV. International Journal of Pharmaceutics. 2019;570. https://doi.org/10.1016/j.ijpharm.2019.118643

  75. Machado RM, Palmeira-de-oliveira A, Martinez-de-oliveira J, Palmeira-de-oliveira R. Vaginal Films for Drug Delivery. J Pharm Sci. 2013;102:2069–81.

    Article  CAS  PubMed  Google Scholar 

  76. Bassi P, Kaur G. Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceutical Journal. 2017;25:32–43. https://doi.org/10.1016/j.jsps.2015.06.003.

    Article  PubMed  Google Scholar 

  77. Real DA, Martinez M v., Frattini A, Soazo M, Luque AG, Biasoli MS, et al. Design, characterization, and in vitro evaluation of antifungal polymeric films. AAPS PharmSciTech. 2013;14:64–73.

  78. Dolci LS, Albertini B, di Filippo MF, Bonvicini F, Passerini N, Panzavolta S. Development and in vitro evaluation of mucoadhesive gelatin films for the vaginal delivery of econazole. International Journal of Pharmaceutics. 2020;591. https://doi.org/10.1016/j.ijpharm.2020.119979

  79. Mishra R, Joshi P, Mehta T. Formulation, development and characterization of mucoadhesive film for treatment of vaginal candidiasis. International Journal of Pharmaceutical Investigation. 2016;6:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mishra R, Soni K, Mehta T. Mucoadhesive vaginal film of fluconazole using cross-linked chitosan and pectin: In vitro and in vivo study. J Therm Anal Calorim. 2017;130:1683–95.

    Article  CAS  Google Scholar 

  81. Kumar L, Reddy MS, Shirodkar RK, Pai GK, Krishna VT, Verma R. Preparation and Characterisation of fluconazole vaginal films for the treatment of vaginal candidiasis. Indian Journal of Pharmaceutical Sciences. 2013. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877521/

  82. Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf, B. 2012;91:258–65.

    Article  CAS  Google Scholar 

  83. Ikeda T, Ikeda K, Yamamoto K, Ishizaki H, Yoshizawa Y, Yanagiguchi K, et al. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Research International. 2014;1–8.

  84. Rossi S, Marciello M, Ferrari F, Puccio A, Bonferoni C, Sandri G, et al. Development of sponge-like dressings for mucosal/transmucosal drug delivery into vaginal cavity. Pharm Dev Technol. 2012;17:219–26.

    Article  CAS  PubMed  Google Scholar 

  85. Ge Y, Tang J. Fabrication, Characterization and antimicrobial property of natural TTOLs/CS composite sponges. Fibers and Polymers. 2016;17:862–72.

    Article  CAS  Google Scholar 

  86. Shaker DS, Ismail S, Hamed S, El-Shishtawy EM. Butoconazole nitrate vaginal sponge: drug release and antifungal efficacy. Journal of Drug Delivery Science and Technology. 2018;48:274–87.

    Article  CAS  Google Scholar 

  87. Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, et al. Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm. 2010;76:296–303. https://doi.org/10.1016/j.ejpb.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  88. Hammer KA, Carson CF, Riley T v. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. Journal of Antimicrobial Chemotherapy. 2004;53:1081–5.

  89. Farag RS, Shalaby AS, El-Baroty GA, Ibrahim NA, Ali MA, Hassan EM. Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother Res. 2004;18:30–5.

    Article  CAS  PubMed  Google Scholar 

  90. Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update. 2015;21:353–77.

    Article  CAS  PubMed  Google Scholar 

  91. Sánchez-López E, Gómara MJ, Haro I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides. Curr Med Chem. 2021;28:4356–79.

    Article  PubMed  Google Scholar 

  92. Mathur M, Devi VK. Potential of novel drug delivery systems in the management of topical candidiasis. J Drug Target. 2017;25:685–703. https://doi.org/10.1080/1061186X.2017.1331352.

    Article  CAS  PubMed  Google Scholar 

  93. Deepak A, Goyal AK, Rath G. Nanofiber in transmucosal drug delivery. Journal of Drug Delivery Science and Technology. 2018;43:379–87.

    Article  CAS  Google Scholar 

  94. Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng, C. 2019;94:1102–24.

    Article  CAS  Google Scholar 

  95. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials. 2013;1–22.

  96. Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics. 2021;13:1–21.

    Article  CAS  Google Scholar 

  97. Yu DG, Branford-White C, Shen XX, Zhang XF, Zhu LM. Solid dispersions of ketoprofen in drug-loaded electrospun nanofibers. J Dispersion Sci Technol. 2010;31:902–8.

    Article  CAS  Google Scholar 

  98. Rasekh M, Karavasili C, Soong YL, Bouropoulos N, Morris M, Armitage D, et al. Electrospun PVP-indomethacin constituents for transdermal dressings and drug delivery devices. Int J Pharm. 2014;473:95–104. https://doi.org/10.1016/j.ijpharm.2014.06.059.

    Article  CAS  PubMed  Google Scholar 

  99. Sharma R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of polymeric electrospun nanofiber: a tool for local delivery of fluconazole for management of vaginal candidiasis. Artificial Cells, Nanomedicine and Biotechnology. 2016;44:524–31.

    Article  CAS  PubMed  Google Scholar 

  100. Tuğcu-Demiröz F, Saar S, Kara AA, Yıldız A, Tunçel E, Acartürk F. Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. European Journal of Pharmaceutical Sciences. 2021;161.

Download references

Acknowledgements

Julia Conte thank the Brazilian governmental agency CAPES/MEC for her scholarship. The authors thank Gilberto Pereira (gpdobrasil@gmail.com) for his generous support with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

Julia Conte: Conceptualization; Writing—Original Draft.

Alexandre Luis Parize: Review & Editing.

Thiago Caon: Conceptualization; Writing—Review & Editing; Supervision.

Corresponding author

Correspondence to Thiago Caon.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, J., Parize, A.L. & Caon, T. Advanced Solid Formulations For Vulvovaginal Candidiasis. Pharm Res 40, 593–610 (2023). https://doi.org/10.1007/s11095-022-03441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03441-5

Keywords

Navigation