Skip to main content

Advertisement

Log in

Design, Fabrication and Evaluation of Stabilized Polymeric mixed micelles for Effective Management in Cancer Therapy

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein’s expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored.

Methods

The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer).

Results

Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells.

Conclusion

The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BCL-2:

B-cell lymphoma-2

BCS:

Biopharmaceutics Classification System

BPMM :

Blank polymeric mixed micelles

CLL:

Chronic Lymphatic Leukemia

CMC:

Critical Micellar Concentration

EGFR:

Epidermal Growth Factor Receptor

ER:

Estrogen Receptor

FITC:

Fluorescein isothiocyanate

HER-2:

Human Epidermal Growth Factor-2

PMM:

Polymeric mixed micelles

PR:

Progesterone Receptor

TPGS:

D-alpha tocopherol PEG1000 succinate

VGFR:

Vascular Endothelial Growth Factor

VLX:

Venetoclax

VPMM:

Venetoclax loaded polymer mixed micelles

References

  1. Maurea N, et al. Women survive breast cancer but fall victim to heart failure: The shadows and lights of targeted therapy. J Cardiovasc Med. Dec. 2010;11(12):861–8. https://doi.org/10.2459/JCM.0B013E328336B4C1.

    Article  Google Scholar 

  2. Ahn ER, Vogel CL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2011;131(2):371–83. https://doi.org/10.1007/S10549-011-1781-Y.

    Article  PubMed  Google Scholar 

  3. Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC. Emerging Antibody-Based HER2 (ErbB-2/neu) Therapeutics. Breast Dis. Jan. 1999;11(1):113–24. https://doi.org/10.3233/BD-1999-11110.

    Article  Google Scholar 

  4. Malavia N, Kuche K, Ghadi R, Jain S. A bird’s eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release. Feb. 2021;330:72–100. https://doi.org/10.1016/J.JCONREL.2020.12.012.

    Article  CAS  PubMed  Google Scholar 

  5. Tarantino P, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. npj Breast Cancer. 2022;8(1):1–7. https://doi.org/10.1038/s41523-022-00386-1.

    Article  CAS  Google Scholar 

  6. Selestin Raja I, Thangam R, Fathima NN. Polymeric Micelle of a Gelatin-Oleylamine Conjugate: A Prominent Drug Delivery Carrier for Treating Triple Negative Breast Cancer Cells. ACS Applied Bio Mater. 2018;1(5):1725–34. https://doi.org/10.1021/ACSABM.8B00526/SUPPL_FILE/MT8B00526_SI_001.PDF.

    Article  CAS  Google Scholar 

  7. Mehra NK, Tekmal RR, Palakurthi S. Development and Evaluation of Talazoparib Nanoemulsion for Systemic Therapy of BRCA1-mutant Cancer. Anticancer Research. 2018;38(8):4493–503. https://doi.org/10.21873/ANTICANRES.12753.

    Article  CAS  PubMed  Google Scholar 

  8. Mehra NK, Jain NK. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol Pharm. Feb. 2015;12(2):630–43. https://doi.org/10.1021/MP500720A/ASSET/IMAGES/MP500720A.SOCIAL.JPEG_V03.

    Article  CAS  PubMed  Google Scholar 

  9. Su J, Zhou L, Xia MH, Xu Y, Xiang XY, Sun LK. Bcl-2 family proteins are involved in the signal crosstalk between endoplasmic reticulum stress and mitochondrial dysfunction in tumor chemotherapy resistance. BioMed Res Inter 2014, 2014, https://doi.org/10.1155/2014/234370.

  10. Pollyea DA, Amaya M, Strati P, Konopleva MY. Venetoclax for AML: changing the treatment paradigm. Blood Adv. Dec. 2019;3(24):4326–35. https://doi.org/10.1182/BLOODADVANCES.2019000937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. Sep. 2017;58(9):2026–39. https://doi.org/10.1080/10428194.2017.1283032.

    Article  CAS  PubMed Central  Google Scholar 

  12. Deeks ED. Venetoclax: First Global Approval. Drugs. 2016;76(9):979–87. https://doi.org/10.1007/S40265-016-0596-X.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts AW, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. Jan. 2016;374(4):311–22. https://doi.org/10.1056/NEJMOA1513257/SUPPL_FILE/NEJMOA1513257_DISCLOSURES.PDF.

    Article  CAS  PubMed  Google Scholar 

  14. Cho H, Kwon GS. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging. ACS Nano. Nov. 2011;5(11):8721–9. https://doi.org/10.1021/NN202676U/ASSET/IMAGES/NN202676U.SOCIAL.JPEG_V03.

    Article  CAS  PubMed  Google Scholar 

  15. Shin HC, Alani AWG, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. Dec. 2009;140(3):294–300. https://doi.org/10.1016/J.JCONREL.2009.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharmaceutical Research. 2010;27(12):2569–89. https://doi.org/10.1007/S11095-010-0233-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials, 7(2), 145–158, 2010, https://doi.org/10.1517/17425240903436479.

  18. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. Jun. 2001;73(2–3):137–72. https://doi.org/10.1016/S0168-3659(01)00299-1.

    Article  CAS  PubMed  Google Scholar 

  19. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. Mar. 2009;71(3):409–19. https://doi.org/10.1016/J.EJPB.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  20. Alakhov V, Kabanov A. Block Copolymer-Based Formulations of Doxorubicin Effective Against Drug Resistant Tumours. Biomedical Polymers and Polymer Therapeutics, 121–137, 2002, https://doi.org/10.1007/0-306-46842-5_10.

  21. A. v. Kabanov, E. v. Batrakova, and V. Y. Alakhov. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Controll Release. 2002;82(2–3):189–212. https://doi.org/10.1016/S0168-3659(02)00009-3.

    Article  Google Scholar 

  22. Wong JE, Duchscherer TM, Pietraru G, Cramb DT. Novel Fluorescence Spectral Deconvolution Method for Determination of Critical Micelle Concentrations Using the Fluorescence Probe PRODAN. Langmuir. Sep. 1999;15(19):6181–6. https://doi.org/10.1021/LA981716Z.

    Article  CAS  Google Scholar 

  23. Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials. Apr. 2011;32(11):2894–906. https://doi.org/10.1016/J.BIOMATERIALS.2010.12.039.

    Article  CAS  PubMed  Google Scholar 

  24. Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release. 2004;94(2–3):411–22. https://doi.org/10.1016/J.JCONREL.2003.10.018.

    Article  CAS  PubMed  Google Scholar 

  25. Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethylene glycol)–phosphatidylethanolamine conjugate and d-α-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm. Dec. 2005;306(1–2):142–9. https://doi.org/10.1016/J.IJPHARM.2005.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release. Jan. 2005;102(1):203–22. https://doi.org/10.1016/J.JCONREL.2004.09.021.

    Article  CAS  PubMed  Google Scholar 

  27. Mehra NK, Verma AK, Mishra PR, Jain NK. The cancer targeting potential of d-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials. May 2014;35(15):4573–88. https://doi.org/10.1016/J.BIOMATERIALS.2014.02.022.

    Article  CAS  PubMed  Google Scholar 

  28. Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In vitro characterization of pluronic F127 and D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater. Jan. 2012;2012:11. https://doi.org/10.1155/2012/916573.

    Article  CAS  Google Scholar 

  29. Lei XY, et al. Apoptosis induced by diallyl disulfide in human breast cancer cell line MCF-71. Acta Pharmacol Sin. Oct. 2008;29(10):1233–9. https://doi.org/10.1111/J.1745-7254.2008.00851.X.

    Article  CAS  PubMed  Google Scholar 

  30. Goud NS, et al. Synthesis and biological evaluation of morpholines linked coumarin–triazole hybrids as anticancer agents. Chem Biol Drug Des. Nov. 2019;94(5):1919–29. https://doi.org/10.1111/CBDD.13578.

    Article  CAS  PubMed  Google Scholar 

  31. Thatikonda S, Pooladanda V, Godugu C. Repurposing an old drug for new use: Niclosamide in psoriasis-like skin inflammation. J Cell Physiol. Jun. 2020;235(6):5270–83. https://doi.org/10.1002/JCP.29413.

    Article  CAS  PubMed  Google Scholar 

  32. Qi J, Yao Q, Qian K, Tian L, Cheng Z, Wang Y. Gallium(III) complexes of α-N-heterocyclic piperidylthiosemicarbazones: Synthesis, structure-activity relationship, cellular uptake and activation of caspases-3/7/9. J Inorg Biochem. Sep. 2018;186:42–50. https://doi.org/10.1016/J.JINORGBIO.2018.05.005.

    Article  CAS  PubMed  Google Scholar 

  33. Sun YL, et al. A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway. BMC Cancer. Dec. 2019;20(1):1–12. https://doi.org/10.1186/S12885-019-6169-0/FIGURES/6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomed. May 2018;13:2869. https://doi.org/10.2147/IJN.S153094.

    Article  CAS  Google Scholar 

  35. Perdih F, Žigart N, Časar Z. Crystal Structure and Solid-State Conformational Analysis of Active Pharmaceutical Ingredient Venetoclax. Crystals. 2021;11(3):261. https://doi.org/10.3390/CRYST11030261.

    Article  CAS  Google Scholar 

  36. Saxena V, Delwar Hussain M. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713. https://doi.org/10.2147/IJN.S28745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zakaria AS, Afifi SA, Elkhodairy KA. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and in Vivo Evaluation. BioMed Res Int 2016;2016, https://doi.org/10.1155/2016/6525163.

  38. Paul DR. Elaborations on the Higuchi model for drug delivery. Int J Pharm. Oct. 2011;418(1):13–7. https://doi.org/10.1016/J.IJPHARM.2010.10.037.

    Article  CAS  PubMed  Google Scholar 

  39. Collnot EM, et al. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: Influence on ATPase activity and membrane fluidity. Mol Pharm. May 2007;4(3):465–74. https://doi.org/10.1021/MP060121R/ASSET/IMAGES/MP060121R.SOCIAL.JPEG_V03.

    Article  CAS  PubMed  Google Scholar 

  40. Guan Y, et al. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharm Res. 2011;34(10):1719–28. https://doi.org/10.1007/S12272-011-1016-0.

    Article  CAS  PubMed  Google Scholar 

  41. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. Feb. 2000;45(3):528–37. https://doi.org/10.1016/S0008-6363(99)00384-3/2/45-3-528-FIG2.GIF.

    Article  CAS  PubMed  Google Scholar 

  42. Chazotte B. Labeling Nuclear DNA Using DAPI. Cold Spring Harbor Protocols. 2011;2011(1):pdb.prot5556. https://doi.org/10.1101/PDB.PROT5556.

    Article  PubMed  Google Scholar 

  43. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. May 2005;5(1):1–7. https://doi.org/10.1186/1472-6750-5-12/TABLES/1.

    Article  Google Scholar 

  44. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med. Mar. 2010;48(6):749–62. https://doi.org/10.1016/J.FREERADBIOMED.2009.12.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad (Ministry of Chemical and Fertilizers, India), and grateful thanks to Anamika Sharma, Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, INDIA, for providing extending facilities during this manuscript (Manuscript communication no.: NIPER-H/2022-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelesh Kumar Mehra.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest related to manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chary, P.S., Rajana, N., Devabattula, G. et al. Design, Fabrication and Evaluation of Stabilized Polymeric mixed micelles for Effective Management in Cancer Therapy. Pharm Res 39, 2761–2780 (2022). https://doi.org/10.1007/s11095-022-03395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03395-8

Keywords

Navigation