Skip to main content

Advertisement

Log in

N-terminus of Etanercept is Proteolytically Processed by Dipeptidyl Peptidase-4

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Biologics are structurally heterogeneous and can undergo biotransformation in the body. Etanercept (ETN) is a fusion protein composed of a soluble tumor necrosis factor (TNF) receptor and the Fc portion of human immunoglobulin G1. The N-terminus of ETN has a putative sequence cleaved by dipeptidyl peptidase-4 (DPP-4). The purpose of this study was to investigate the biotransformation of ETN in humans and mice and evaluate its effects on functional properties.

Methods

An analytical method using liquid chromatography-mass spectrometry (LC–MS/MS) was established. The N-terminal heterogeneity of ETN was assessed in the serum of patients with rheumatoid arthritis or mice receiving ETN. The in vitro N-terminal truncation was explored using recombinant DPP-4. The binding affinity to TNF-α or TNF-β was investigated using an in-house enzyme-linked immunosorbent assay.

Results

In the formulations, about 90% of ETN had an intact N-terminus, while the N-terminal truncated form was most abundant in the serum of the patients with rheumatoid arthritis and mice. Recombinant human DPP-4 cleaved two amino acids from the N-terminus of ETN in vitro. Sitagliptin, a DPP-4 inhibitor, inhibited N-terminal truncation both in vivo and in vitro. However, N-terminal truncation did not affect the binding ability to TNF-α or TNF-β and the pharmacokinetics of ETN. ETN biosimilars exhibited similar characteristics to the reference product in vivo and in vitro.

Conclusions

ETN undergoes N-terminal truncation in the body, and DPP-4 cleaves exogenous ETN via N-terminal proteolysis. The application of an MS-based assay will detect novel biotransformation of therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig.9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

Ccps:

Counts per second

Δ1AA:

Cleavage of 1 amino acid

Δ2AA:

Cleavage of 2 amino acids

DPP-4:

Dipeptidyl peptidase-4

ELISA:

Enzyme-linked immunosorbent assay

ETN:

Etanercept

FL:

Full length

HRP:

Horseradish peroxidase

IgG1:

Immunoglobulin G1

IS:

Internal standard

KD :

Dissociation constant

LC–MS/MS:

Liquid chromatography-mass spectrometry

MRM:

Multiple reaction monitoring

nSMOL:

Nano-surface and molecular-orientation limited

RA:

Rheumatoid arthritis

rh:

Recombinant human

SD:

Standard deviation

TNF:

Tumor necrosis factor

References

  1. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24:1241–52. https://doi.org/10.1038/nbt1252.

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins N, Murphy L, Tyther R. Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Mol Biotechnol. 2008;39:113–8. https://doi.org/10.1007/s12033-008-9049-4.

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97:2426–47. https://doi.org/10.1002/jps.21180.

    Article  CAS  PubMed  Google Scholar 

  4. Schadt S, Hauri S, Lopes F, Edelmann MR, Staack RF, Villaseñor R, et al. Are biotransformation studies of therapeutic proteins needed? Scientific considerations and technical challenges. Drug Metab Dispos. 2019;47:1443–56. https://doi.org/10.1124/dmd.119.088997.

    Article  CAS  PubMed  Google Scholar 

  5. ICH. S6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s6r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals Accessed Jun 22, 2022

  6. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med. 1997;337:141–7. https://doi.org/10.1056/NEJM199707173370301.

    Article  CAS  PubMed  Google Scholar 

  7. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117:244–79. https://doi.org/10.1016/j.pharmthera.2007.10.001

  8. Lethaby A, Lopez-Olivo MA, Maxwell L, Burls A, Tugwell P, Wells GA. Etanercept for the treatment of rheumatoid arthritis. Cochrane Database Syst Rev. 2013;5:CD004525. https://doi.org/10.1002/14651858.CD004525.pub2

  9. Zhao S, Mysler E, Moots RJ. Etanercept for the treatment of rheumatoid arthritis. Immunotherapy. 2018;10:433–45. https://doi.org/10.2217/imt-2017-0155.

    Article  CAS  PubMed  Google Scholar 

  10. Korth-Bradley JM, Rubin AS, Hanna RK, Simcoe DK, Lebsack ME. The pharmacokinetics of etanercept in healthy volunteers. Ann Pharmacother. 2000;34:161–4. https://doi.org/10.1345/aph.19126.

    Article  CAS  PubMed  Google Scholar 

  11. Kawai S, Sekino H, Yamashita N, Tsuchiwata S, Liu H, Korth-Bradley JM. The comparability of etanercept pharmacokinetics in healthy Japanese and American subjects. J Clin Pharmacol. 2006;46:418–23. https://doi.org/10.1177/0091270006286435.

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi T, Miyasaka N, Kawai S, Sugiyama N, Yuasa H, Yamashita N, et al. Pharmacokinetics, efficacy and safety profiles of etanercept monotherapy in Japanese patients with rheumatoid arthritis: review of seven clinical trials. Mod Rheumatol. 2015;25:173–86. https://doi.org/10.3109/14397595.2014.914014.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev. 2009;28:147–76. https://doi.org/10.1002/mas.20190.

    Article  CAS  PubMed  Google Scholar 

  14. Lee JH, Yeo J, Park HS, Sung G, Lee SH, Yang SH, et al. Biochemical characterization of a new recombinant TNF receptor-hyFc fusion protein expressed in CHO cells. Protein Expr Purif. 2013;87:17–26. https://doi.org/10.1016/j.pep.2012.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001;54:249–64. https://doi.org/10.1046/j.1365-3083.2001.00984.x.

    Article  CAS  PubMed  Google Scholar 

  16. Matteucci E, Giampietro O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem. 2009;16:2943–51. https://doi.org/10.2174/092986709788803114.

    Article  CAS  PubMed  Google Scholar 

  17. Terao C, Hashimoto M, Yamamoto K, Murakami K, Ohmura K, Nakashima R, et al. Three groups in the 28 joints for rheumatoid arthritis synovitis–analysis using more than 17,000 assessments in the KURAMA database. PLoS ONE. 2013;8: e59341. https://doi.org/10.1371/journal.pone.0059341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwamoto N, Yokoyama K, Takanashi M, Yonezawa A, Matsubara K, Shimada T. Application of nSMOL coupled with LC-MS bioanalysis for monitoring the Fc-fusion biopharmaceuticals etanercept and abatacept in human serum. Pharmacol Res Perspect. 2018;6: e00422. https://doi.org/10.1002/prp2.422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwamoto N, Shimada T, Umino Y, Aoki C, Aoki Y, Sato TA, et al. Selective detection of complementarity-determining regions of monoclonal antibody by limiting protease access to the substrate: nano-surface and molecular-orientation limited proteolysis. Analyst. 2014;139:576–80. https://doi.org/10.1039/c3an02104a.

    Article  CAS  PubMed  Google Scholar 

  20. Hampson G, Ward TH, Cummings J, Bayne M, Tutt AL, Cragg MS, et al. Validation of an ELISA for the determination of rituximab pharmacokinetics in clinical trials subjects. J Immunol Methods. 2010;360:30–8. https://doi.org/10.1016/j.jim.2010.05.009.

    Article  CAS  PubMed  Google Scholar 

  21. Hamuro LL, Kishnani NS. Metabolism of biologics: biotherapeutic proteins Bioanalysis. 2012;4:189–95. https://doi.org/10.4155/bio.11.304.

    Article  CAS  PubMed  Google Scholar 

  22. Neubert H, Alley SC, Lee A, Jian W, Buonarati M, Edmison A, et al. 2020 White paper on recent issues in bioanalysis: BMV of hybrid assays, acoustic MS, HRMS, data integrity, endogenous compounds, microsampling and microbiome (Part 1 – recommendations on industry/regulators consensus on BMV of biotherapeutics by LCMS, advanced application in hybrid assays, regulatory challenges in mass spec, innovation in small molecules, peptides and oligos). Bioanalysis. 2021;13:203–38. https://doi.org/10.4155/bio-2020-0324.

    Article  CAS  PubMed  Google Scholar 

  23. Chu KO, Liu DTL, Chan KP, Yang YP, Yam GHF, Rogers MS, et al. Quantification and structure elucidation of in vivo bevacizumab modification in rabbit vitreous humor after intravitreal injection. Mol Pharm. 2012;9:3422–33. https://doi.org/10.1021/mp3005403.

    Article  CAS  PubMed  Google Scholar 

  24. Otani Y, Yonezawa A, Tsuda M, Imai S, Ikemi Y, Nakagawa S, et al. Time-dependent structural alteration of rituximab analyzed by LC/TOF-MS after a systemic administration to rats. PLoS ONE. 2017;12: e0169588. https://doi.org/10.1371/journal.pone.0169588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell. 1993;73:431–45. https://doi.org/10.1016/0092-8674(93)90132-a.

    Article  CAS  PubMed  Google Scholar 

  26. Mukai Y, Nakamura T, Yoshikawa M, Yoshioka Y, Tsunoda S, Nakagawa S, et al. Solution of the structure of the TNF-TNFR2 complex. Sci Signal. 2010;3:ra83. https://doi.org/10.1126/scisignal.2000954

  27. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9:15–32. https://doi.org/10.1007/s13238-017-0408-4.

    Article  CAS  PubMed  Google Scholar 

  28. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25. https://doi.org/10.1038/nri2155.

    Article  CAS  PubMed  Google Scholar 

  29. Aertgeerts K, Ye S, Shi L, Prasad SG, Witmer D, Chi E, et al. N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 2004;13:145–54. https://doi.org/10.1110/ps.03352504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong J, Kankanala S, Rajagopalan S. Dipeptidyl peptidase-4 inhibition: insights from the bench and recent clinical studies. Curr Opin Lipidol. 2016;27:484–92. https://doi.org/10.1097/MOL.0000000000000340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care. 2007;30:1335–43. https://doi.org/10.2337/dc07-0228.

    Article  CAS  PubMed  Google Scholar 

  32. Deacon CF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16:642–53. https://doi.org/10.1038/s41574-020-0399-8.

    Article  CAS  PubMed  Google Scholar 

  33. Broxmeyer HE, Hoggatt J, O’Leary HA, Mantel C, Chitteti BR, Cooper S, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96. https://doi.org/10.1038/nm.2991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zell M, Husser C, Staack RF, Jordan G, Richter WF, Schadt S, et al. In vivo biotransformation of the fusion protein tetranectin-apolipoprotein A1 analyzed by ligand-binding mass spectrometry combined with quantitation by ELISA. Anal Chem. 2016;88:11670–7. https://doi.org/10.1021/acs.analchem.6b03252.

    Article  CAS  PubMed  Google Scholar 

  35. Schadt S, Husser C, Staack RF, Ekiciler A, Qiu NH, Fowler S, et al. The in vitro biotransformation of the fusion protein tetranectin-apolipoprotein A1. Sci Rep. 2019;9(1):4074. https://doi.org/10.1038/s41598-019-40542-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther. 2005;78(6):675–88. https://doi.org/10.1016/j.clpt.2005.09.002.

    Article  CAS  PubMed  Google Scholar 

  37. Forest T, Holder D, Smith A, Cunningham C, Yao X, Dey M, et al. Characterization of the exocrine pancreas in the male Zucker diabetic fatty rat model of type 2 diabetes mellitus following 3 months of treatment with sitagliptin. Endocrinology. 2014;155(3):783–92. https://doi.org/10.1210/en.2013-1781.

    Article  CAS  PubMed  Google Scholar 

  38. Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The dipeptidyl peptidase family, prolyl oligopeptidase, and Prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol. 2015;6:387. https://doi.org/10.3389/fimmu.2015.00387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid for Scientific Research (B 19H03389), by the Japan Agency for Medical Research and Development (AMED) under Grant Number 21mk0101152h0503 and by the Nakatomi Foundation to A.Y.

Author information

Authors and Affiliations

Authors

Contributions

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work, and have given their approval for this version to be published. S.Masui, A.Y., T.S., and K.Matsubara contributed to the study conception and design, and preparing a draft of the manuscript. S.Masui, K.Y., N.I., T.S., S.N., D.H., K.I., S.I., T.N., and M.H. performed the experiments and analyzed the data. A.O., H.O., T.F., K.Murakami, K.Murata, M.T., S.Matsuda, and A.M. contributed to the acquisition of patients’ data. S.Matsuda, A.M., T.T., and K.Matsubara supervised the study. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Atsushi Yonezawa.

Ethics declarations

Conflict of Interest

The Department of Advanced Medicine for Rheumatic Diseases is supported by two local governments (Nagahama City, Shiga, and Toyooka City, Hyogo, Japan) and five pharmaceutical companies (Mitsubishi Tanabe Pharma Co.; Chugai Pharmaceutical Co. Ltd.; UCB Japan Co. Ltd.; Asahi Kasei Pharma Corp.; and AYUMI Pharmaceutical Co.). The KURAMA cohort study is supported by a grant from Daiichi Sankyo Co. Ltd. A.Y. has received a research grant from Shimadzu Corporation and AYUMI Pharmaceutical Co. A.O. reports grants from Pfizer Inc., Bristol-Myers Squibb., Advantest, personal fees from Asahi Kasei Pharma Corp., Chugai Pharmaceutical Co. Ltd., Eli Lilly Japan K.K, Ono Pharmaceutical Co., Mitsubishi Tanabe Pharma Co., Eisai Co. Ltd., Abbvie Inc., Takeda Pharmaceutical Co. Ltd., and Daiichi Sankyo Co. Ltd. T.F. received speaking fees from Eisai Co. Ltd., Asahi Kasei Pharma Corp., Abbvie Inc., and Janssen Pharmaceutical K.K. K.Murata received a speaking fee and/or consulting fees from Eisai Co. Ltd., Chugai Pharmaceutical Co. Ltd.; Asahi Kasei Pharma Corp., Bristol-Myers Squibb, Mitsubishi Tanabe Pharma Co., Janssen Pharmaceutical K.K. and Daiichi Sankyo Co. Ltd. M.T. has received research grants and/or speaker fees from Abbvie Inc., Asahi Kasei Pharma Corp., Astellas Pharma Inc., Chugai Pharmaceutical Co. Ltd., Daiichi Sankyo Co. Ltd., Eisai Co. Ltd., Eli Lilly Japan K.K., Janssen Pharmaceutical K.K., Kyowa Kirin Co. Ltd., Pfizer Inc., Taisho Pharmaceutical Co. Ltd., Mitsubishi Tanabe Pharma Co., Teijin Pharma, Ltd., UCB Japan Co. Ltd. S. Matsuda received speaker fees from Pfizer Inc. A.M. has received honorarium from AbbVie G.K., Chugai Pharmaceutical Co. Ltd., Eli Lilly Japan K.K., Eisai Co. Ltd., Pfizer Inc., Bristol-Myers Squibb., Mitsubishi Tanabe Pharma Co., Astellas Pharma Inc., and Gilead Sciences Japan., and has received research grants from AbbVie G.K., Asahi Kasei Pharma Corp., Chugai Pharmaceutical Co. Ltd., Mitsubishi Tanabe Pharma Co. and Eisai Co. Ltd.

Consent to Participate

Written informed consent to participate in this study was obtained from all patients.

Consent for Publication

Not applicable.

Ethical Approval

Written informed consent to participate in this cohort study was obtained from all patients. All patients’ data were de-identified and analyzed anonymously. The present study adhered to the principles of the Declaration of Helsinki and was approved by the Medical Ethics Committee of Kyoto University Graduate School and Faculty of Medicine (R0357). All animal studies were conducted in accordance with the guidelines for animal experiments at Kyoto University. The protocols were approved by the Animal Research Committee of the Graduate School of Medicine, Kyoto University (Permission No. MedKyo21113).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masui, S., Yonezawa, A., Yokoyama, K. et al. N-terminus of Etanercept is Proteolytically Processed by Dipeptidyl Peptidase-4. Pharm Res 39, 2541–2554 (2022). https://doi.org/10.1007/s11095-022-03371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03371-2

Keywords

Navigation