Skip to main content

Advertisement

Log in

Amphiphilic Ionic Liquids Capable to Formulate Organized Systems in an Aqueous Solution, Designed by a Combination of Traditional Surfactants and Commercial Drugs

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The present review describes the state of the art in the conversion of pharmaceutically active ingredients (API) in amphiphilic Ionic Liquids (ILs) as alternative drug delivery systems. In particular, we focus our attention on the compounds generated by ionic exchange and without original counterions which generate different systems in comparison with the simple mixtures. In water, these new amphiphiles show similar or even better properties as surfactants in comparison with their precursors. Cations such as 1-alkyl-3-methyl-imidazolium and anions such as dioctyl sulfosuccinate or sodium dodecyl sulfate appear as the amphiphilic components most studied. In conclusion, this work shows interesting information on several promissory compounds and they appear as an interesting challenge to extend the application of ILs in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Scheme 7
Fig. 2
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13

Similar content being viewed by others

References

  1. Qu W, Qader IB, Abbott AP. Controlled release of pharmaceutical agents using eutectic modified gelatin. Drug Deliv Transl Res. 2022;12:1187–94. https://doi.org/10.1007/s13346-021-00998-3.

    Article  CAS  PubMed  Google Scholar 

  2. Bhattacharjee S. Craft of co-encapsulation in nanomedicine: a struggle to achieve synergy through reciprocity. ACS Pharmacol Transl Sci. 2022;5:278–98.

    Article  CAS  PubMed  Google Scholar 

  3. Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering nanomaterials for smart drug release: Recent advances and challenges. Appl Target Nano Drugs Deliv Syst. 2018:411–49. https://doi.org/10.1016/B978-0-12-814029-1.00015-6.

  4. Correa NM, Silber JJ, Riter RE, Levinger NE. Nonaqueous polar solvents in revers micelle systems. Chem Rev. 2012;112:4569–602.

    Article  CAS  PubMed  Google Scholar 

  5. Dib N, Lépori CMO, Correa NM, Silber JJ, Falcone RD, García-Río L. Biocompatible solvents and ionic liquid-based surfactants as sustainable components to formulate environmentally friendly organized systems. Polymers (Basel). 2021;13:1378.

    Article  CAS  Google Scholar 

  6. Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3:139–62.

    Article  CAS  PubMed  Google Scholar 

  7. Orellano MS, Chiappetta DA, Silber JJ, Falcone RD, Correa NM. Monitoring the microenvironment inside polymeric micelles using the fluorescence probe 6-propionyl-2-dimethylaminonaphthalene (PRODAN). J Mol Liq. 2021;343:117552. https://doi.org/10.1016/j.molliq.2021.117552.

    Article  CAS  Google Scholar 

  8. Zhang N, Liu W, Dong Z, Yin Y, Luo J, Lu T, et al. An integrated tumor microenvironment responsive polymeric micelle for smart drug delivery and effective drug release. Bioconjug Chem. 2021;32:2083–94.

    Article  CAS  PubMed  Google Scholar 

  9. Welton T. Ionic liquids: a brief history. Biophys Rev. 2018;10:691–706. https://doi.org/10.1007/s12551-018-0419-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paul BK, Moulik SP. Ionic liquid-based surfactant science: formulation, characterization, and applications: John Wiley & Sons; 2015.

    Book  Google Scholar 

  11. Gomes JM, Silva SS, Reis RL. Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev. 2019;48:4317–35 Available from: http://xlink.rsc.org/?DOI=C9CS00016J.

    Article  CAS  PubMed  Google Scholar 

  12. Kohli R. Applications of ionic liquids in removal of surface contaminants. In: Kohli R, Mittal KLBT-D in SC and CA of CT, editors. Dev Surf Contam Clean Appl Clean Tech. Elsevier; 2019. p. 619–80. Available from: http://www.sciencedirect.com/science/article/pii/B9780128155776000165

  13. Zhang S, Zhang J, Zhang Y, Deng Y. Nanoconfined ionic liquids. Chem Rev. 2017;117:6755–833.

    Article  CAS  PubMed  Google Scholar 

  14. Singh SK, Savoy AW. Ionic liquids synthesis and applications: an overview. J Mol Liq. 2020;297:112038. https://doi.org/10.1016/j.molliq.2019.112038.

    Article  CAS  Google Scholar 

  15. Huang W, Wu X, Qi J, Zhu Q, Wu W, Lu Y, et al. Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discov Today. 2020;25:901–8.

    Article  CAS  PubMed  Google Scholar 

  16. Dinis TBV, e Silva FA, Sousa F, Freire MG. Advances brought by hydrophilic ionic liquids in fields involving pharmaceuticals. Materials (Basel). 2021;14:1–43.

    Article  Google Scholar 

  17. Curreri AM, Mitragotri S, Tanner EEL. Recent advances in ionic liquids in biomedicine. Adv Sci. 2021;8:1–18.

    Article  Google Scholar 

  18. Zhuang W, Hachem K, Bokov D, Javed Ansari M, Taghvaie NA. Ionic liquids in pharmaceutical industry: a systematic review on applications and future perspectives. J Mol Liq. 2022;349:118145. https://doi.org/10.1016/j.molliq.2021.118145.

    Article  CAS  Google Scholar 

  19. Wu X, Zhu Q, Chen Z, Wu W, Lu Y, Qi J. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. J Control Release. 2021;338:268–83.

    Article  CAS  PubMed  Google Scholar 

  20. Marrucho IM, Branco LC, Rebelo LPN. Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng. 2014;5:527–46.

    Article  CAS  PubMed  Google Scholar 

  21. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111:3508–76.

    Article  CAS  PubMed  Google Scholar 

  22. Paul BK, Moulik SP. Ionic liquid-based surfactant science. Paul BK, Moulik SP, editors. Ion. Liq. Surfactant Sci. Formul. Charact. Appl. Hoboken: John Wiley & Sons, Inc; 2015. https://doi.org/10.1002/9781118854501.

  23. Lépori CMO, Silber JJ, Falcone RD, Correa NM. Improvement of the amphiphilic properties of a dialkyl phosphate by creation of a protic ionic liquid-like surfactant. RSC Adv. 2017;7:44743–50 Available from: http://xlink.rsc.org/?DOI=C7RA08907D.

    Article  Google Scholar 

  24. Villa CC, Moyano F, Ceolin M, Silber JJ, Falcone RD, Correa NM. A unique ionic liquid with amphiphilic properties that can form reverse micelles and spontaneous unilamellar vesicles. Chem - A Eur J. 2012;18:15598–601.

    Article  CAS  Google Scholar 

  25. Falcone RD, Correa NM, Silber JJ. Amphiphilic ionic liquids as sustainable components to formulate promising vesicles to be used in nanomedicine. Curr Opin Green Sustain Chem. 2020;26:100382. https://doi.org/10.1016/j.cogsc.2020.100382.

    Article  Google Scholar 

  26. Brown P, Butts CP, Eastoe J, Fermin D, Grillo I, Lee HC, et al. Anionic surfactant ionic liquids with 1-Butyl-3-methyl-imidazolium cations: characterization and application. Langmuir. 2012;28:2502–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lépori CMO, Correa NM, Silber JJ, Falcone RD. How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant. Soft Matter R Soc Chem. 2016;12:830–44.

    Article  Google Scholar 

  28. Buettner CS, Cognigni A, Schröder C, Bica-Schröder K. Surface-active ionic liquids: a review. J Mol Liq. 2022;347:118160. https://doi.org/10.1016/j.molliq.2021.118160.

    Article  CAS  Google Scholar 

  29. Pacheco-Fernández I, González-Hernández P, Pino V, Ayala JH, Afonso AM. CHAPTER 3 ionic liquid-based surfactants: a step forward. Ion Liq Devices. 2018:53–78. https://doi.org/10.1039/9781788011839-00053.

  30. Falcone RD, Correa NM, Silber JJ, Levinger NE. Ionic liquids in soft confinement: Effect of reverse micelle interfaces on the entrapped ionic liquid structure. Ion Liq Surfactant Sci Formul Charact Appl. Hoboken: John Wiley & Sons, Inc; 2015. p. 283–301. https://doi.org/10.1002/9781118854501.ch14

  31. Villa CC, Correa NM, Silber JJ, Moyano F, Falcone RD. Singularities in the physicochemical properties of spontaneous AOT-BHD unilamellar vesicles in comparison with DOPC vesicles. Phys Chem Chem Phys. 2015;17:17112–21.

    Article  CAS  PubMed  Google Scholar 

  32. Villa CC, Silber JJ, Correa NM, Falcone RD. Effect of the cationic surfactant moiety on the structure of water entrapped in two Catanionic reverse micelles created from ionic liquid-like surfactants. ChemPhysChem. 2014;15:3097–109.

    Article  CAS  PubMed  Google Scholar 

  33. Lépori CMO, Correa NM, Silber JJ, Vaca Chávez F, Falcone RD. Interfacial properties modulated by the water confinement in reverse micelles created by the ionic liquid-like surfactant bmim-AOT. Soft Matter. 2019;15:947–55 Available from: http://xlink.rsc.org/?DOI=C8SM02217H.

    Article  PubMed  Google Scholar 

  34. Toledo Hijo AAC, Maximo GJ, Costa MC, Cunha RL, Pereira JFB, Kurnia KA, et al. Phase behavior and physical properties of New biobased ionic liquid crystals. J Phys Chem B. 2017;121:3177–89.

    Article  CAS  PubMed  Google Scholar 

  35. Ariga K, Kunitake T. Supramolecular chemistry – fundamentals and applications. Advanced textbook; Springer: Heidelberg 2006 [internet]. Springer Heidelb 2006. Available from: http://www.oxkstu.ru/download/Ariga_K_Supramolecular_Chemistry_-_Fundamentals_and_Applications.pdf

  36. Zhao Z, Yao W, Wang N, Liu C, Zhou H, Chen H, et al. Synthesis and evaluation of mono- and multi-hydroxyl low toxicity pH-sensitive cationic lipids for drug delivery. Eur J Pharm Sci. 2019;133:69–78. https://doi.org/10.1016/j.ejps.2019.03.018.

    Article  CAS  PubMed  Google Scholar 

  37. Correa NM, Zhang H, Schelly ZA. Preparation of AgBr quantum dots via electroporation of vesicles. J Am Chem Soc. 2000;122:6432–4.

    Article  CAS  Google Scholar 

  38. Luna MA, Silber JJ, Sereno L, Correa NM, Moyano F. Determining the substrate permeability through the bilayer of large unilamellar vesicles of DOPC. A kinetic study. RSC Adv. 2016;6:62594–601. https://doi.org/10.1039/C6RA12847E.

    Article  CAS  Google Scholar 

  39. Villa CC, Silber JJ, Falcone RD, Correa NM. Subtleties of catanionic surfactant reverse micelle assemblies revealed by a fluorescent molecular probe. Methods Appl Fluoresc. 2017;5:044001.

    Article  PubMed  Google Scholar 

  40. Silva BFB, Marques EF, Olsson U. Aqueous phase behavior of salt-free catanionic surfactants: the influence of solubility mismatch on spontaneous curvature and balance of forces. Soft Matter. 2011;7:225–36.

    Article  CAS  Google Scholar 

  41. Jokela P, Jönsson B, Khan A. Phase equilibria of catanionic surfactant-water systems. J Phys Chem. 1987;91:3291–8.

    Article  CAS  Google Scholar 

  42. Silvas BFB, Marques EF, Olsson U, Pons R. Headgroup effects on the unusual lamellar-lamellar coexistence and vesicle-to-micelle transition of salt-free catanionic amphiphiles. Langmuir. 2010;26:3058–66.

    Article  Google Scholar 

  43. Silva BFB, Marques EF, Olsson U. Unusual vesicle−micelle transitions in a salt-free Catanionic surfactant: temperature and concentration effects. Langmuir. 2008;24:10746–54. https://doi.org/10.1021/la801548s.

    Article  CAS  PubMed  Google Scholar 

  44. Silva BFB, Marques EF, Olsson U. Lamellar miscibility gap in a binary catanionic surfactant - water system. J Phys Chem B. 2007;111:13520–6.

    Article  CAS  PubMed  Google Scholar 

  45. Stagnoli S, Luna MA, Villa CC, Alustiza F, Niebylski A, Moyano F, et al. Unique catanionic vesicles as a potential “nano-taxi” for drug delivery systems.: In vitro and in vivo biocompatibility evaluation. RSC Adv. 2017;7:5372–80.

    Article  CAS  Google Scholar 

  46. Mal A, Bag S, Ghosh S, Moulik SP. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: an extended exploration. Colloids Surf A Physicochem Eng Asp. 2018;553:633–44. https://doi.org/10.1016/j.colsurfa.2018.05.099.

    Article  CAS  Google Scholar 

  47. Correa NM, Silber JJ, Riter RE, Levinger NE. Nonaqueous polar solvents in reverse micelle systems. Chem Rev. 2012;112:4569–602. https://doi.org/10.1021/cr200254q.

    Article  CAS  PubMed  Google Scholar 

  48. New RRC, editor. Liposomes. A practical approach. New York: Oxford University Press Inc; 1997.

    Google Scholar 

  49. Lasic DD. Liposomes: from physics to applications. Amsterdam: Elsevier Science B.V; 1995.

    Google Scholar 

  50. Walde P, Ichikawa S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng. 2001;18:143–77.

    Article  CAS  PubMed  Google Scholar 

  51. Brown P, Butts C, Dyer R, Eastoe J, Grillo I, Guittard F, et al. Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir. 2011;27:4563–71.

    Article  CAS  PubMed  Google Scholar 

  52. Ritacco H, Kurlat DH. Critical aggregation concentration in the PAMPS (10%)/DTAB system. Colloids Surf A Physicochem Eng Asp. 2003;218:27–45.

    Article  CAS  Google Scholar 

  53. Valero M, Velázquez MM. Effect of the addition of water-soluble polymers on the interfacial properties of aerosol OT vesicles. J Colloid Interface Sci. 2004;278:465–71.

    Article  CAS  PubMed  Google Scholar 

  54. Garofalakis G, Murray BS, Sarney DB. Surface activity and critical aggregation concentration of pure sugar esters with different sugar headgroups. J Colloid Interface Sci. 2000;229:391–8.

    Article  CAS  PubMed  Google Scholar 

  55. Jain N, Trabelsi S, Guillot S, McLoughlin D, Langevin D, Letellier P, et al. Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir. 2004;20:8496–503.

    Article  CAS  PubMed  Google Scholar 

  56. Pedro SN, Freire CSR, Silvestre AJD, Freire MG. The role of ionic liquids in the pharmaceutical field: an overview of relevant applications. Int J Mol Sci. 2020;21:1–50.

    Article  Google Scholar 

  57. Modi S, Prajapati R, Inwati GK, Deepa N, Tirth V, Yadav VK, et al. Recent trends in fascinating applications of nanotechnology in allied health sciences. Crystals. 2022;12:39.

    Article  CAS  Google Scholar 

  58. Júlio A, Costa JG, Pereira-Leite C, de Almeida TS. Transfersomils: from ionic liquids to a new class of nanovesicular systems. Nanomaterials. 2022;12:1–16.

    Google Scholar 

  59. Hough-Troutman WL, Smiglak M, Griffin S, Matthew Reichert W, Mirska I, Jodynis-Liebert J, et al. Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J Chem. 2009;33:26–33.

    Article  CAS  Google Scholar 

  60. Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys. 2010;12:2011 Available from: http://xlink.rsc.org/?DOI=c001176m.

    Article  CAS  PubMed  Google Scholar 

  61. Sahbaz Y, Nguyen TH, Ford L, McEvoy CL, Williams HD, Scammells PJ, et al. Ionic liquid forms of weakly acidic drugs in Oral lipid formulations: preparation, characterization, in vitro digestion, and in vivo absorption studies. Mol Pharm. 2017;14:3669–83.

    Article  CAS  PubMed  Google Scholar 

  62. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31:1429–36.

    Article  CAS  Google Scholar 

  63. Moshikur RM, Ali MK, Moniruzzaman M, Goto M. Recent advances in surface-active ionic liquid-assisted self-assembly systems for drug delivery. Curr Opin Colloid Interface Sci. 2021;56:101515. https://doi.org/10.1016/j.cocis.2021.101515.

    Article  CAS  Google Scholar 

  64. Dew N, Bramer T, Edsman K. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. J Colloid Interface Sci. 2008;323:386–94.

    Article  CAS  PubMed  Google Scholar 

  65. Bramer T, Paulsson M, Edwards K, Edsman K. Catanionic drug-surfactant mixtures: phase behavior and sustained release from gels. Pharm Res. 2003;20:1661–7.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang Y, Li F, Luan Y, Cao W, Ji X, Zhao L, et al. Formation of drug/surfactant catanionic vesicles and their application in sustained drug release. Int J Pharm. 2012;436:806–14. https://doi.org/10.1016/j.ijpharm.2012.07.053.

    Article  CAS  PubMed  Google Scholar 

  67. Srivastava A, Uchiyama H, Wada Y, Hatanaka Y, Shirakawa Y, Kadota K, et al. Mixed micelles of the antihistaminic cationic drug diphenhydramine hydrochloride with anionic and non-ionic surfactants show improved solubility, drug release and cytotoxicity of ethenzamide. J Mol Liq. 2019;277:349–59. https://doi.org/10.1016/j.molliq.2018.12.070.

    Article  CAS  Google Scholar 

  68. Sharma S, Kumar K, Chauhan S. Micellization properties of antihistaminic drug diphenhydramine. HCl in aqueous electrolytic solution: Conductometric and spectroscopic studies. J Mol Liq. 2020;300:112306. https://doi.org/10.1016/j.molliq.2019.112306.

    Article  CAS  Google Scholar 

  69. Bramer T, Karlsson G, Edwards K, Edsman K. Effects of pH and ionic strength on catanionic drug-surfactant mixtures used for prolonged release from gels. J Drug Deliv Sci Technol. 2007;17:285–91. https://doi.org/10.1016/S1773-2247(07)50097-3.

    Article  CAS  Google Scholar 

  70. Srinivasa Rao K, Gehlot PS, Trivedi TJ, Kumar A. Self-assembly of new surface active ionic liquids based on aerosol-OT in aqueous media. J Colloid Interface Sci. 2014;428:267–75. https://doi.org/10.1016/j.jcis.2014.04.062.

    Article  CAS  PubMed  Google Scholar 

  71. Nogueira DR, Mitjans M, Infante MR, Vinardell MP. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomater. 2011;7:2846–56. https://doi.org/10.1016/j.actbio.2011.03.017.

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava A, Dey J, Ismail K. Interaction of tetracaine hydrochloride with sodium deoxycholate in aqueous micellar phase and at the surface. Colloids Surf A Physicochem Eng Asp. 2015;466:181–8. https://doi.org/10.1016/j.colsurfa.2014.11.001.

    Article  CAS  Google Scholar 

  73. Moreira DN, Fresno N, Pérez-Fernández R, Frizzo CP, Goya P, Marco C, et al. Brønsted acid-base pairs of drugs as dual ionic liquids: NMR ionicity studies. Tetrahedron. 2015;71:676–85. https://doi.org/10.1016/j.tet.2014.12.003.

    Article  CAS  Google Scholar 

  74. Kumar A, Kumari K, Singh S, Bahdur I, Singh P. Noscapine anticancer drug designed with ionic liquids to enhance solubility: DFT and ADME approach. J Mol Liq. 2021;325:115159. https://doi.org/10.1016/j.molliq.2020.115159.

    Article  CAS  Google Scholar 

  75. Vashishat R, Chabba S, Mahajan RK. Effect of surfactant head group on micellization and morphological transitions in drug-surfactant catanionic mixture: a multi-technique approach. Colloids Surf A Physicochem Eng Asp. 2016;498:206–17. https://doi.org/10.1016/j.colsurfa.2016.03.058.

    Article  CAS  Google Scholar 

  76. Rajput SM, Mondal K, Kuddushi M, Jain M, Ray D, Aswal VK, et al. Formation of hydrotropic drug/gemini surfactant based catanionic vesicles as efficient nano drug delivery vehicles. Colloids Interface Sci Commun. 2020;37:100273. https://doi.org/10.1016/j.colcom.2020.100273.

    Article  CAS  Google Scholar 

  77. Singh O, Kaur R, Aswal VK, Mahajan RK. Composition and concentration gradient induced structural transition from micelles to vesicles in the mixed system of ionic liquid-diclofenac sodium. Langmuir. 2016;32:6638–47.

    Article  CAS  PubMed  Google Scholar 

  78. Paulsson M, Edsman K. Controlled drug release from gels using surfactant aggregates. II. Vesicles formed from mixtures of amphiphilic drugs and oppositely charged surfactants. Pharm Res. 2001;18:1586–92.

    Article  CAS  PubMed  Google Scholar 

  79. Kumar M, Singh V, Choudhary R, , Singh S, Srivastava A. Mixed Micellization of drug-excipients and its application to enhance the binding and encapsulation efficacy of ibuprofen in aqueous media. Colloids Surf A Physicochem Eng Asp 2021;628:127268. https://doi.org/10.1016/j.colsurfa.2021.127268.

    Article  CAS  Google Scholar 

  80. Srivastava A, Liu C, Lv J, Qiao W. Enhanced intercellular release of anticancer drug by using nano-sized catanionic vesicles of doxorubicin hydrochloride and gemini surfactants. J Mol Liq. 2018;259:398–410. https://doi.org/10.1016/j.molliq.2018.03.065.

    Article  CAS  Google Scholar 

  81. Kulshrestha A, Sharma S, Singh K, Kumar A. Magnetoresponsive biocomposite hydrogels comprising gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery. Mater Adv R Soc Chem. 2022;3:484–92.

    CAS  Google Scholar 

  82. Zhao L, Liu J, Zhang L, Gao Y, Zhang Z, Luan Y. Self-assembly properties, aggregation behavior and prospective application for sustained drug delivery of a drug-participating catanionic system. Int J Pharm. 2013;452:108–15. https://doi.org/10.1016/j.ijpharm.2013.04.072.

    Article  CAS  PubMed  Google Scholar 

  83. Weaver KD, Kim HJ, Sun J, MacFarlane DR, Elliott GD. Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem. 2010;12:507–51.

    Article  CAS  Google Scholar 

  84. Borrego E, Sicilia D, Rubio S, Pérez-Bendito D. Determination of drugs based on the formation of mixed aggregates with surfactants. Anal Chim Acta. 1998;362:285–97.

    Article  CAS  Google Scholar 

  85. Casal-Dujat L, Griffiths PC, Rodríguez-Abreu C, Solans C, Rogers S, Pérez-García L. Nanocarriers from dicationic bis-imidazolium amphiphiles and their interaction with anionic drugs. J Mater Chem B. 2013;1:4963–71.

    Article  CAS  PubMed  Google Scholar 

  86. Bramer T, Dew N, Edsman K. Catanionic mixtures involving a drug: a rather general concept that can be utilized for prolonged drug release from gels. J Pharm Sci. 2006;95:769–80 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354916319955.

    Article  CAS  PubMed  Google Scholar 

  87. Roy A, Kundu S, Dutta R, Sarkar N. Influence of bile salt on vitamin E derived vesicles involving a surface active ionic liquid and conventional cationic micelle. J Colloid Interface Sci. 2017;501:202–14. https://doi.org/10.1016/j.jcis.2017.04.051.

    Article  CAS  PubMed  Google Scholar 

  88. Torres-Luna C, Koolivand A, Fan X, Agrawal NR, Hu N, Zhu Y, et al. Formation of drug-participating catanionic aggregates for extended delivery of non-steroidal anti-inflammatory drugs from contact lenses. Biomolecules. 2019;9:593.

    Article  CAS  PubMed Central  Google Scholar 

  89. Kaczmarek DK, Rzemieniecki T, Marcinkowska K, Pernak J. Synthesis, properties and adjuvant activity of docusate-based ionic liquids in pesticide formulations. J Ind Eng Chem. 2019;78:440–7. https://doi.org/10.1016/j.jiec.2019.05.023.

    Article  CAS  Google Scholar 

  90. Vaid ZS, Kumar A, El Seoud OA, Malek NI. Drug induced micelle-to-vesicle transition in aqueous solutions of cationic surfactants. RSC Adv. 2017;7:3861–9.

    Article  CAS  Google Scholar 

  91. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JAN. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science. 1989;245:1371–4. https://doi.org/10.1126/science.2781283.

    Article  CAS  PubMed  Google Scholar 

  92. Bi Y, Zhao L, Hu Q, Gao Y, Yu L. Aggregation behavior of imidazolium-based surface-active ionic liquids with Photoresponsive Cinnamate Counterions in the aqueous solution. Langmuir. 2015;31:12597–608.

    Article  CAS  PubMed  Google Scholar 

  93. Sanan R, Kaur R, Mahajan RK. Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution. RSC Adv. 2014;4:64877–89 Available from: http://xlink.rsc.org/?DOI=C4RA10840J.

    Article  CAS  Google Scholar 

  94. Kumar H, Kaur G. Influence of sodium bis(2-ethylhexyl) sulfosuccinate on the self-assembly of AOT based surface-active ionic liquids having different pharmacologically active cations in the aqueous medium. J Mol Liq. 2021;336:116872. https://doi.org/10.1016/j.molliq.2021.116872.

    Article  CAS  Google Scholar 

  95. Bramer T, Dew N, Edsman K. Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol. 2007;59:1319–34. https://doi.org/10.1211/jpp.59.10.0001.

    Article  CAS  PubMed  Google Scholar 

  96. Jiang Y, Hu X, Zhang J, Jin G, Luan Y. Chlorambucil prodrug-participating catanionic aggregates for sustained drug release and improved antitumour activity. J Mol Liq. 2019;274:556–61.

    Article  CAS  Google Scholar 

  97. Bramer T, Frenning G, Gråsjö J, Edsman K, Hansson P. Implications of regular solution theory on the release mechanism of catanionic mixtures from gels. Colloids Surf B: Biointerfaces. 2009;71:214–25.

    Article  CAS  PubMed  Google Scholar 

  98. Jiang Y, Luan Y, Qin F, Zhao L, Li Z. Catanionic vesicles from an amphiphilic prodrug molecule: a new concept for drug delivery systems. RSC Adv. 2012;2:6905–12.

    Article  CAS  Google Scholar 

  99. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang L, Liu J, Tian T, Gao Y, Ji X, Li Z, et al. Pharmaceutically active ionic liquid self-assembled vesicles for the application as an efficient drug delivery system. ChemPhysChem. 2013;14:3454–7.

    Article  CAS  PubMed  Google Scholar 

  101. Kitagawa N, Oda M, Nobutaka I, Satoh H, Totoki T, Morimoto M. A proposed mechanism for amitriptyline neurotoxicity based on its detergent nature. Toxicol Appl Pharmacol. 2006;217:100–6.

    Article  CAS  PubMed  Google Scholar 

  102. Liu J, Jiang Y, Cui Y, Xu C, Ji X, Luan Y. Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an ef fi cient cytarabine delivery system. Int J Pharm. 2014;473:560–71. https://doi.org/10.1016/j.ijpharm.2014.07.032.

    Article  CAS  PubMed  Google Scholar 

  103. Varshney M, Khanna T, Changez M. Effects of AOT micellar systems on the transdermal permeation of glyceryl trinitrate. Colloids Surf B: Biointerfaces. 1999;13:1–11.

    Article  CAS  Google Scholar 

  104. Saha R, Verma PK, Mitra RK, Pal SK. Structural and dynamical characterization of unilamellar AOT vesicles in aqueous solutions and their efficacy as potential drug delivery vehicle. Colloids Surf B: Biointerfaces. 2011;88:345–53. https://doi.org/10.1016/j.colsurfb.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

  105. Silva AT, Lobo L, Oliveira IS, Gomes J, Teixeira C, Nogueira F, et al. Building on surface-active ionic liquids for the rescuing of the antimalarial drug chloroquine. Int J Mol Sci. 2020;21:1–9.

    Article  Google Scholar 

  106. Singh G, Kaur M, Kaur H, Kang TS. Synthesis and complexation of a new caffeine based surface active ionic liquid with lysozyme in aqueous medium: physicochemical, computational and antimicrobial studies. J Mol Liq. 2021;325:115156. https://doi.org/10.1016/j.molliq.2020.115156.

    Article  CAS  Google Scholar 

  107. Tay E, Nguyen TH, Ford L, Williams HD, Benameur H, Scammells PJ, et al. Ionic liquid forms of the antimalarial lumefantrine in combination with LFCS type IIIB lipid-based formulations preferentially increase lipid solubility, in vitro solubilization behavior and in vivo exposure. Pharmaceutics. 2020;12:17.

    Article  CAS  Google Scholar 

  108. Ford L, Tay E, Nguyen TH, Williams HD, Benameur H, Scammells PJ, et al. API ionic liquids: probing the effect of counterion structure on physical form and lipid solubility. RSC Adv R Soc Chem. 2020;10:12788–99.

    Article  CAS  Google Scholar 

  109. Consola S, Blanzat M, Perez E, Garrigues JC, Bordat P, Rico-Lattes I. Design of original bioactive formulations based on sugar-surfactant/non- steroidal anti-inflammatory catanionic self-assemblies: a new way of dermal drug delivery. Chem - A Eur J. 2007;13:3039–47.

    Article  CAS  Google Scholar 

  110. Tourné-Péteilh C, Coasne B, In M, Brevet D, Devoisselle JM, Vioux A, et al. Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir. 2014;30:1229–38.

    Article  PubMed  Google Scholar 

  111. Tourné-Péteilh C, Devoisselle JM, Vioux A, Judeinstein P, In M, Viau L. Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys Chem Chem Phys. 2011;13:15523–9.

    Article  PubMed  Google Scholar 

  112. Ghaed-Sharaf T, Ghatee MH. Synergistic aggregation of the ibuprofenate anion and a a double-strand imidazolium cation into vesicles for drug delivery: a simulation study. J Mol Liq. 2021;332:115874. https://doi.org/10.1016/j.molliq.2021.115874.

    Article  CAS  Google Scholar 

  113. Qamar S, Brown P, Ferguson S, Khan RA, Ismail B, Khan AR, et al. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants. J Colloid Interface Sci. 2016;481:117–24. https://doi.org/10.1016/j.jcis.2016.07.054.

    Article  CAS  PubMed  Google Scholar 

  114. Sastry NV, Singh DK. Surfactant and gelation properties of acetylsalicylate based room temperature ionic liquid in aqueous media. Langmuir. 2016;32:10000–16.

    Article  CAS  PubMed  Google Scholar 

  115. Sastry NV, Trivedi PA. Drug anion based surface active ionic liquids: molecular interactions, surface activity and micellization behavior in aqueous solutions. J Mol Liq. 2021;336:116345. https://doi.org/10.1016/j.molliq.2021.116345.

    Article  CAS  Google Scholar 

  116. Kuddushi M, Patel NK, Rajput S, El Seoud OA, Mata JP, Malek NI. Temperature-responsive low molecular weight ionic liquid based Gelator: an approach to fabricate an anti-Cancer drug-loaded hybrid Ionogel. ChemSystemsChem. 2020;2:1–12.

    Article  Google Scholar 

  117. Kuddushi M, Patel NK, Mata J, El Seoud O, Malek N. Imidazole-based surface-active gelator: Thermo responsive gel-to-gel transition of 1-hexadecyl-3-methyl imidazolium salicylate for multidimensional applications. J Mol Liq. 2022;345:117773. https://doi.org/10.1016/j.molliq.2021.117773.

    Article  CAS  Google Scholar 

  118. Singh O, Singla P, Aswal VK, Mahajan RK. Aggregation and morphological aptitude of drug-based ionic liquids in aqueous solution. ACS OMEGA. 2017;2:3296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Collins KD, Neilson GW, Enderby JE. Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem. 2007;128:95–104.

    Article  CAS  PubMed  Google Scholar 

  120. Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Ž, et al. Antimicrobial activities of highly bioavailable organic salts and ionic liquids from fluoroquinolones. Pharmaceutics. 2020;12:1–15.

    Article  Google Scholar 

Download references

Acknowledgments

R.D.F., N.M.C. and J.J.S. hold a research position at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). N. D. thanks Agencia Nacional de Promoción Científica y Técnica for a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Nahir Dib: Conceptualization, Writing - review & editing, Visualization. N. Mariano Correa: Writing - review & editing, Visualization, Supervision. Juana J. Silber: Writing - review & editing, Visualization, Supervision. R. Dario Falcone: Writing-original draft, Conceptualization, Writing - review & editing, Visualization, Supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. Dario Falcone.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dib, N., Silber, J.J., Correa, N.M. et al. Amphiphilic Ionic Liquids Capable to Formulate Organized Systems in an Aqueous Solution, Designed by a Combination of Traditional Surfactants and Commercial Drugs. Pharm Res 39, 2379–2390 (2022). https://doi.org/10.1007/s11095-022-03342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03342-7

Keywords

Navigation