Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Dual Blockade of PD-1 and LAG3 Immune Checkpoints Increases Dendritic Cell Vaccine Mediated T Cell Responses in Breast Cancer Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This article was retracted on 26 December 2023

This article has been updated

Abstract

Purpose

Increasing the efficiency of unsuccessful immunotherapy methods is one of the most important research fields. Therefore, the use of combination therapy is considered as one of the ways to increase the effectiveness of the dendritic cell (DC) vaccine. In this study, the inhibition of immune checkpoint receptors such as LAG3 and PD-1 on T cells was investigated to increase the efficiency of T cells in response to the DC vaccine.

Methods

We used trimethyl chitosan-dextran sulfate-lactate (TMC-DS-L) nanoparticles (NPs) loaded with siRNA molecules to quench the PD-1 and LAG3 checkpoints’ expression.

Results

Appropriate physicochemical characteristics of the generated NPs led to efficient inhibition of LAG3 and PD-1 on T cells, which was associated with increased survival and activity of T cells, ex vivo. Also, treating mice with established breast tumors (4T1) using NPs loaded with siRNA molecules in combination with DC vaccine pulsed with tumor lysate significantly inhibited tumor growth and increased survival in mice. These ameliorative effects were associated with increased anti-tumor T cell responses and downregulation of immunosuppressive cells in the tumor microenvironment and spleen.

Conclusion

These findings strongly suggest that TMC-DS-L NPs loaded with siRNA could act as a novel tool in inhibiting the expression of immune checkpoints in the tumor microenvironment. Also, combination therapy based on inhibition of PD-1 and LAG3 in combination with DC vaccine is an effective method in treating cancer that needs to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant information is presented within the article. Additional data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Boer MC, Joosten SA, Ottenhoff THM. Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination. Front Immunol. 2015;6:217.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gilboa E. Dendritic cell based vaccines. J Clin Invest. 2007;117:1195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karpisheh V, Mousavi SM, Sheykholeslami PN, Fathi M, Saray MM, Aghebati-Maleki L, et al. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sciences. 2021:119132.

  4. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4(3):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lesterhuis WJ, Haanen JBAG, Punt CJA. Cancer immunotherapy–revisited. Nat Rev Drug Discovery. 2011;10(8):591–600.

    Article  CAS  PubMed  Google Scholar 

  6. Steven A, Rosenberg JCY, Nicholas P. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    Article  Google Scholar 

  7. Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: An updated review. Artif Cells Nanomed Biotechnol. 2016;44(3):769–79.

    CAS  PubMed  Google Scholar 

  8. Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Kiani FK, Khesht AMS, et al. Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol. 2021;101: 108288.

    Article  CAS  PubMed  Google Scholar 

  9. Fathi M, Pustokhina I, Kuznetsov SV, Khayrullin M, Hojjat-Farsangi M, Karpisheh V, et al. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life. 2021;73(5):726–38.

    Article  CAS  PubMed  Google Scholar 

  10. Pawłowska A, Suszczyk D, Okła K, Barczyński B, Kotarski J, Wertel I. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment. Clin Exp Immunol. 2019;195(3):334–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karpisheh V, Ahmadi M, Abbaszadeh-Goudarzi K, Mohammadpour Saray M, Barshidi A, Mohammadi H, et al. The role of Th17 cells in the pathogenesis and treatment of breast cancer. Cancer Cell Int. 2022;22(1):1–13.

    Article  Google Scholar 

  12. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015;37(4):764–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bastaki S, Aravindhan S, Ahmadpour Saheb N, Afsari Kashani M, Evgenievich Dorofeev A, Karoon Kiani F, et al. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sci. 2021;266: 118847.

    Article  CAS  PubMed  Google Scholar 

  15. Esmaily M, Masjedi A, Hallaj S, Nabi Afjadi M, Malakotikhah F, Ghani S, et al. Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. Journal of controlled release : official journal of the Controlled Release Society. 2020;326:63–74.

    Article  CAS  PubMed  Google Scholar 

  16. Ghasemi-Chaleshtari M, Kiaie SH, Irandoust M, Karami H, Nabi Afjadi M, Ghani S, et al. Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J Cell Physiol. 2020;235(12):10068–80.

    Article  CAS  PubMed  Google Scholar 

  17. Masjedi A, Ahmadi A, Ghani S, Malakotikhah F, Nabi Afjadi M, Irandoust M, et al. Silencing adenosine A2a receptor enhances dendritic cell-based cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2020;29: 102240.

    Article  CAS  Google Scholar 

  18. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203(4):883–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    Article  CAS  PubMed  Google Scholar 

  21. Fanoni D, Tavecchio S, Recalcati S, Balice Y, Venegoni L, Fiorani R, et al. New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett. 2011;134(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  22. Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO open. 2019;4(2): e000482.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yazdani Y, Mohammadnia-Afrouzi M, Yousefi M, Anvari E, Ghalamfarsa G, Hasannia H, et al. Myeloid-derived suppressor cells in B cell malignancies. Tumor Biology. 2015;36(10):7339–53.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  25. Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncoimmunology. 2021;10(1):1989789.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zahm CD, Moseman JE, Delmastro LE, D GM. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncoimmunology. 2021;10(1):1912892.

  27. Jiang H, Ni H, Zhang P, Guo X, Wu M, Shen H, et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology. 2021;10(1):1943180.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang R-Y, Francois A, McGray AJR, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6(1): e1249561.

    Article  PubMed  Google Scholar 

  29. Okazaki T, Okazaki I-m, Wang J, Sugiura D, Nakaki F, Yoshida T, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. Journal of Experimental Medicine. 2011;208(2):395–407.

  30. Hajizadeh F, Ardebili SM, Moornani MB, Masjedi A, Atyabi F, Kiani M, et al. Silencing of HIF-1α/CD73 axis by siRNA-loaded TAT-chitosan-spion nanoparticles robustly blocks cancer cell progression. Eur J Pharmacol. 2020;882: 173235.

    Article  CAS  PubMed  Google Scholar 

  31. Joshi N, Hajizadeh F, Dezfouli EA, Zekiy AO, Afjadi MN, Mousavi SM, et al. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sci. 2021;275: 119369.

    Article  CAS  PubMed  Google Scholar 

  32. Khesht AMS, Karpisheh V, Gilan PS, Melnikova LA, Zekiy AO, Mohammadi M, et al. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int J Biol Macromol. 2021;186:849–63.

    Article  Google Scholar 

  33. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine. 2020;1:10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64–83.

    Article  CAS  PubMed  Google Scholar 

  35. Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, et al. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol. 2020;83: 106446.

    Article  CAS  PubMed  Google Scholar 

  36. Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci - Mater Med. 2009;20(5):1057–79.

    Article  CAS  PubMed  Google Scholar 

  37. Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B–chitosan–dextran sulfate nanoparticles. Int J Pharm. 2007;329(1–2):142–9.

    Article  CAS  PubMed  Google Scholar 

  38. Karpisheh V, Joshi N, Zekiy AO, Beyzai B, Hojjat-Farsangi M, Namdar A, et al. EP4 Receptor as a Novel Promising Therapeutic Target in Colon Cancer: Running title: EP4 receptor in colon cancer. Pathology-Research and Practice. 2020:153247.

  39. Weecharangsan W, Opanasopit P, Ngawhirunpat T, Rojanarata T, Apirakaramwong A. Chitosan lactate as a nonviral gene delivery vector in COS-1 cells. AAPS PharmSciTech. 2006;7(3):E74–9.

    Article  PubMed Central  Google Scholar 

  40. Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther. 2006;12(2):131–8.

    Article  CAS  Google Scholar 

  41. Eivazy P, Atyabi F, Jadidi-Niaragh F, Aghebati Maleki L, Miahipour A, Abdolalizadeh J, et al. The impact of the codelivery of drug-siRNA by trimethyl chitosan nanoparticles on the efficacy of chemotherapy for metastatic breast cancer cell line (MDA-MB-231). Artificial cells, nanomedicine, and biotechnology. 2017;45(5):889–96.

    Article  CAS  PubMed  Google Scholar 

  42. Hashemi V, Ahmadi A, Malakotikhah F, Chaleshtari MG, Baghi Moornani M, Masjedi A, et al. Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sci. 2020;249: 117499.

    Article  CAS  PubMed  Google Scholar 

  43. Hallaj S, Heydarzadeh Asl S, Alian F, Farshid S, Eshaghi FS, Namdar A, et al. Inhibition of CD73 using folate targeted nanoparticles carrying anti-CD73 siRNA potentiates anticancer efficacy of Dinaciclib. Life Sci. 2020;259: 118150.

    Article  CAS  PubMed  Google Scholar 

  44. Alzamely KO, Hajizadeh F, Heydari M, Ghaderi Sede MJ, Asl SH, Peydaveisi M, et al. Combined inhibition of CD73 and ZEB1 by Arg-Gly-Asp (RGD)-targeted nanoparticles inhibits tumor growth. Colloids Surf, B. 2021;197: 111421.

    Article  CAS  Google Scholar 

  45. Jadidi-Niaragh F, Atyabi F, Rastegari A, Mollarazi E, Kiani M, Razavi A, et al. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumor Biology. 2016;37(6):8403–12.

    Article  CAS  PubMed  Google Scholar 

  46. Allahyari SE, Hajizadeh F, Zekiy AO, Mansouri N, Gilan PS, Mousavi SM, et al. Simultaneous inhibition of CD73 and IL-6 molecules by siRNA-loaded nanoparticles prevents the growth and spread of cancer. Nanomed Nanotechnol Biol Med. 2021;34: 102384.

    Article  CAS  Google Scholar 

  47. Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Karoon Kiani F, Mahmoud Salehi Khesht A, et al. Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol. 2021;101(Pt A):108288.

  48. Hosseini F, Hassannia H, Mahdian-Shakib A, Jadidi-Niaragh F, Enderami SE, Fattahi M, et al. Targeting of crosstalk between tumor and tumor microenvironment by β-D mannuronic acid (M2000) in murine breast cancer model. Cancer Med. 2017;6(3):640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, et al. Increased frequency of CD8+ and CD4+ regulatory T cells in chronic lymphocytic leukemia: association with disease progression. Cancer Invest. 2013;31(2):121–31.

    Article  CAS  PubMed  Google Scholar 

  50. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  PubMed  Google Scholar 

  51. Hassannia H, Ghasemi Chaleshtari M, Atyabi F, Nosouhian M, Masjedi A, Hojjat-Farsangi M, et al. Blockage of immune checkpoint molecules increases T-cell priming potential of dendritic cell vaccine. Immunology. 2020;159(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  52. Ghalamfarsa G, Jadidi-Niaragh F, Hojjat-Farsangi M, Asgarian-Omran H, Yousefi M, Tahmasebi F, et al. Differential regulation of B-cell proliferation by IL21 in different subsets of chronic lymphocytic leukemia. Cytokine. 2013;62(3):439–45.

    Article  CAS  PubMed  Google Scholar 

  53. Jadidi-Niaragh F, Jeddi-Tehrani M, Ansaripour B, Razavi SM, Sharifian RA, Shokri F. Reduced frequency of NKT-like cells in patients with progressive chronic lymphocytic leukemia. Medical oncology (Northwood, London, England). 2012;29(5):3561–9.

    Article  CAS  PubMed  Google Scholar 

  54. Esmaily M, Masjedi A, Hallaj S, Afjadi MN, Malakotikhah F, Ghani S, et al. Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. J Control Release. 2020;326:63–74.

    Article  CAS  PubMed  Google Scholar 

  55. Ghasemi-Chaleshtari M, Kiaie SH, Irandoust M, Karami H, Nabi Afjadi M, Ghani S, et al. Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J Cell Physiol. 2020;235(12):10068–80.

    Article  CAS  PubMed  Google Scholar 

  56. Hosseini F, Mahdian-Shakib A, Jadidi-Niaragh F, Enderami SE, Mohammadi H, Hemmatzadeh M, et al. Anti-inflammatory and anti-tumor effects of α-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;98:793–800.

  57. Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G, et al. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci. 2019;237: 116952.

    Article  CAS  PubMed  Google Scholar 

  58. Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. Artificial cells, nanomedicine, and biotechnology. 2016;44(6):1339–49.

    Article  CAS  PubMed  Google Scholar 

  59. Burugu S, Gao D, Leung S, Chia SK, Nielsen TO. LAG-3+ tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+ tumors. Ann Oncol. 2017;28(12):2977–84.

    Article  CAS  PubMed  Google Scholar 

  60. Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Can Res. 2012;72(4):917–27.

    Article  CAS  Google Scholar 

  61. Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, et al. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci. 2020;247: 117437.

    Article  CAS  PubMed  Google Scholar 

  62. Kiani FK, Izadi S, Dezfouli EA, Ebrahimi F, Mohammadi M, Chalajour H, et al. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental models. Life Sci. 2022;288: 120166.

    Article  Google Scholar 

  63. Leone RD, Sun I-M, Oh M-H, Sun I-H, Wen J, Englert J, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018;67(8):1271–84.

    Article  CAS  PubMed  Google Scholar 

  64. Wu Z, Yang L, Shi L, Song H, Shi P, Yang T, et al. Prognostic impact of adenosine receptor 2 (A2aR) and programmed cell death ligand 1 (PD-L1) expression in colorectal cancer. BioMed research international. 2019;2019.

  65. Andrews LP, Marciscano AE, Drake CG, Vignali DAA. LAG 3 (CD 223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Cancer Immunology and Immunotherapy. 2010:269–78.

  67. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  68. Perez-Santos M, Anaya-Ruiz M, Cebada J, Bandala C, Landeta G, Martínez-Morales P, et al. LAG-3 antagonists by cancer treatment: a patent review. Expert Opin Ther Pat. 2019;29(8):643–51.

    Article  CAS  PubMed  Google Scholar 

  69. Webster RM. The immune checkpoint inhibitors: where are we now? Nat Rev Drug Discovery. 2014;13(12):883.

    Article  CAS  PubMed  Google Scholar 

  70. Hassannia H, Ghasemi Chaleshtari M, Atyabi F, Nosouhian M, Masjedi A, Hojjat-Farsangi M, et al. Blockage of immune checkpoint molecules increases T-cell priming potential of dendritic cell vaccine. Immunology. 2020;159(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  71. Brignone C, Gutierrez M, Mefti F, Brain E, Jarcau R, Cvitkovic F, et al. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med. 2010;8(1):1–11.

    Article  Google Scholar 

  72. Han Q, Wang Y, Pang M, Zhang J. STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC. J Exp Clin Cancer Res. 2017;36(1):1–11.

    Article  Google Scholar 

  73. Zhou G, Sprengers D, Boor PPC, Doukas M, Schutz H, Mancham S, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology. 2017;153(4):1107–19.

    Article  CAS  PubMed  Google Scholar 

  74. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer. 2020;20(1):1–10.

    Article  Google Scholar 

  77. Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78: 106113.

    Article  CAS  PubMed  Google Scholar 

  78. Luo F, Cao J, Lu F, Zeng K, Ma W, Huang Y, et al. Lymphocyte activating gene 3 protein expression in nasopharyngeal carcinoma is correlated with programmed cell death-1 and programmed cell death ligand-1, tumor-infiltrating lymphocytes. Cancer Cell Int. 2021;21(1):1–16.

    Article  Google Scholar 

  79. Kiani FK, Izadi S, Dezfouli EA, Ebrahimi F, Mohammadi M, Chalajour H, et al. Simultaneous silencing of A2aR and PD-1 as immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental models. Life Sciences. 2021:120166.

  80. Budi HS, Izadi S, Timoshin A, Asl SH, Beyzai B, Ghaderpour A, et al. Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT-chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth. Nanomed Nanotechnol Biol Med. 2021;34: 102373.

    Article  CAS  Google Scholar 

  81. Nikkhoo A, Rostami N, Farhadi S, Esmaily M, Moghadaszadeh Ardebili S, Atyabi F, et al. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm. 2020;581: 119236.

    Article  CAS  PubMed  Google Scholar 

  82. Rostami N, Nikkhoo A, Khazaei-Poul Y, Farhadi S, Sadat Haeri M, Moghadaszadeh Ardebili S, et al. Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. J Cell Physiol. 2020;235(12):9702–17.

    Article  CAS  PubMed  Google Scholar 

  83. Masjedi A, Ahmadi A, Atyabi F, Farhadi S, Irandoust M, Khazaei-Poul Y, et al. Silencing of IL-6 and STAT3 by siRNA loaded hyaluronate-N, N, N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. Int J Biol Macromol. 2020;149:487–500.

    Article  CAS  PubMed  Google Scholar 

  84. Onyebuchi C, Kavaz D. Chitosan and N, N, N-Trimethyl chitosan nanoparticle encapsulation of Ocimum gratissimum essential oil: Optimised synthesis, in vitro release and bioactivity. Int J Nanomed. 2019;14:7707.

    Article  CAS  Google Scholar 

  85. Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28(38):6282–91.

    Article  PubMed  Google Scholar 

  86. Ghosh S, Sharma G, Travers J, Kumar S, Choi J, Jun HT, et al. TSR-033, a novel therapeutic antibody targeting LAG-3, enhances T-cell function and the activity of PD-1 blockade in vitro and in vivo. Mol Cancer Ther. 2019;18(3):632–41.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, et al. LAG-3 limits regulatory T cell proliferation and function in autoimmune diabetes. Science immunology. 2017;2(9).

  88. Zhou G, Noordam L, Sprengers D, Doukas M, Boor PPC, van Beek AA, et al. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Oncoimmunology. 2018;7(7): e1448332.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Breton G, Yassine-Diab B, Cohn L, Boulassel M-R, Routy J-P, Sékaly R-P, et al. SiRNA knockdown of PD-L1 and PD-L2 in monocyte-derived dendritic cells only modestly improves proliferative responses to gag by CD8+ T cells from HIV-1-infected individuals. J Clin Immunol. 2009;29(5):637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei J, Luo C, Wang Y, Guo Y, Dai H, Tong C, et al. PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immunother Cancer. 2019;7(1):1–15.

    Article  Google Scholar 

  91. Foy SP, Sennino B, dela Cruz T, Cote JJ, Gordon EJ, Kemp F, et al. Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, yielding complete tumor regression in mice. PloS one. 2016;11(2):e0150084.

  92. Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 2013;190(9):4899–909.

    Article  CAS  PubMed  Google Scholar 

  93. Huang R-Y, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015;6(29):27359.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lichtenegger FS, Rothe M, Schnorfeil FM, Deiser K, Krupka C, Augsberger C, et al. Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Front Immunol. 2018;9:385.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wölfl M, Greenberg PD. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc. 2014;9(4):950–66.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol. 2011;33(3):545–67.

    Article  CAS  PubMed  Google Scholar 

  97. Kheshti AMS, Hajizadeh F, Barshidi A, Rashidi B, Ebrahimi F, Bahmanpour S, et al. Combination Cancer Immunotherapy with Dendritic Cell Vaccine and Nanoparticles Loaded with Interleukin-15 and Anti-beta-catenin siRNA Significantly Inhibits Cancer Growth and Induces Anti-Tumor Immune Response. Pharm Res. 2022;39(2):353–67.

    Article  CAS  PubMed  Google Scholar 

  98. Antonios JP, Soto H, Everson RG, Orpilla J, Moughon D, Shin N, et al. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI insight. 2016;1(10).

  99. Ge Y, Xi H, Ju S, Zhang X. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett. 2013;336(2):253–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are very grateful for the financial support of Urmia University of Medical Sciences (grant number:10954) and Tabriz University of Medical Sciences (grant numbers: 66472 and 66443) for this study. We also thank the National Institute for Medical Research Development, NIMAD, for supporting this study (grant number: 4000524). We would also like thank to Koosha Koorehpaz and Mehran Mozaffari for their excellent contribution in this study. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Asal Barshidi, Vahid Karpisheh, Mohammad Hojjat-Farsangi, Naime Majidi Zolbanin. Data curation: Asal Barshidi, Hadi Hassannia, Sanam Nami, Fariba Karoon Kiani, Negin Afsharimanesh, Jamshid Gholizadeh Navashenaq. Formal analysis: Asal Barshidi, Vahid Karpisheh, Fariba Karoon Kiani, Negin Afsharimanesh, Jamshid Gholizadeh Navashenaq, Ata Mahmoodpoor. Funding acquisition: Ata Mahmoodpoor, Reza Jafari, Farhad Jadidi-Niaragh, Fatemeh Karimian Noukabadi. Methodology: Asal Barshidi, Vahid Karpisheh, Hadi Hassannia, Jamshid Gholizadeh Navashenaq, Sanam Nami, Pooya Jalali1 Project administration: Farbod Ebrahimi, Seyed Hossein Kiaie, Reza Jafari, Farhad Jadidi-Niaragh.

Writing-review and editing: Reza Jafari, Farhad Jadidi-Niaragh.

Corresponding authors

Correspondence to Reza Jafari or Farhad Jadidi-Niaragh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11095-023-03647-1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barshidi, A., Karpisheh, V., Noukabadi, F.K. et al. RETRACTED ARTICLE: Dual Blockade of PD-1 and LAG3 Immune Checkpoints Increases Dendritic Cell Vaccine Mediated T Cell Responses in Breast Cancer Model. Pharm Res 39, 1851–1866 (2022). https://doi.org/10.1007/s11095-022-03297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03297-9

KEY WORDS

Navigation