Skip to main content
Log in

Spray Dried Rugose Lipid Particle Platform for Respiratory Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a new lipid-based particle formulation platform for respiratory drug delivery applications. To find processing conditions for high surface rugosity and manufacturability. To assess the applicability of the new formulation method to different lipids.

Methods

A new spray drying method with a simplified aqueous suspension feedstock preparation process was developed for the manufacture of rugose lipid particles of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). A study covering a wide range of feedstock temperatures and outlet temperatures was conducted to optimize the processing conditions. Aerosol performance was characterized in vitro and in silico to assess the feasibility of their use in respiratory drug delivery applications. The applicability of the new spray drying method to longer-chain phospholipids with adjusted spray drying temperatures was also evaluated.

Results

Highly rugose DSPC lipid particles were produced via spray drying with good manufacturability. A feedstock temperature close to, and an outlet temperature lower than, the main phase transition were identified as critical in producing particles with highly rugose surface features. High emitted dose and total lung dose showed promising aerosol performance of the produced particles for use as a drug loading platform for respiratory drug delivery. Two types of longer-chain lipid particles with higher main phase transition temperatures, 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) and 1,2-dibehenoyl-sn-glycero-3-phosphocholine (22:0 PC), yielded similar rugose morphologies when spray dried at correspondingly higher processing temperatures.

Conclusions

Rugose lipid particles produced via spray drying from an aqueous suspension feedstock are promising as a formulation platform for respiratory drug delivery applications. The new technique can potentially produce rugose particles using various other lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74. https://doi.org/10.1038/nrd2153.

    Article  CAS  PubMed  Google Scholar 

  2. Sanders M. Inhalation therapy: an historical review. Prim Care Respir J. 2007;16(2):71–81. https://doi.org/10.3132/pcrj.2007.00017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices (Auckl). 2015;8:131. https://doi.org/10.2147/MDER.S48888.

    Article  Google Scholar 

  4. Le Brun P, De Boer A, Frijlink H, Heijerman H. A review of the technical aspects of drug nebulization. Pharm World Sci. 2000;22(3):75–81. https://doi.org/10.1023/A:1008786600530.

    Article  PubMed  Google Scholar 

  5. Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–55. https://doi.org/10.1208/s12249-013-0063-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein SW, Sheth P, Hodson PD, Myrdal PB. Advances in metered dose inhaler technology: hardware development. AAPS PharmSciTech. 2014;15(2):326–38. https://doi.org/10.1208/s12249-013-0062-y.

    Article  CAS  PubMed  Google Scholar 

  7. Chougule MB, Padhi BK, Jinturkar KA, Misra A. Development of dry powder inhalers. Recent Pat Drug Deliv Formul. 2007;1(1):11–21. https://doi.org/10.2174/187221107779814159.

    Article  CAS  PubMed  Google Scholar 

  8. Frijlink H, De Boer A. Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv. 2004;1(1):67–86. https://doi.org/10.1517/17425247.1.1.67.

    Article  CAS  PubMed  Google Scholar 

  9. de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14(4):499–512. https://doi.org/10.1080/17425247.2016.1224846.

    Article  CAS  PubMed  Google Scholar 

  10. Chan JGY, Wong J, Zhou QT, Leung SSY, Chan H-K. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech. 2014;15(4):882–97. https://doi.org/10.1208/s12249-014-0114-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  12. Weers JG, Miller DP. Formulation design of dry powders for inhalation. J Pharm Sci. 2015;104(10):3259–88. https://doi.org/10.1002/jps.24574.

    Article  CAS  PubMed  Google Scholar 

  13. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  14. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19. https://doi.org/10.1016/j.ijpharm.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  15. Hamishehkar H, Rahimpour Y, Javadzadeh Y. The role of carrier in dry powder inhaler. In: Sezer AD, editor. Recent advances in novel drug carrier systems. Rijeka: InTech; 2012. p. 39–66. https://doi.org/10.5772/51209.

    Chapter  Google Scholar 

  16. Zillen D, Beugeling M, Hinrichs WL, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin colloid. Interface Sci. 2021;101497. https://doi.org/10.1016/j.cocis.2021.101497.

  17. Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163:198–211. https://doi.org/10.1016/j.ejpb.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Del Rev. 2012;64(3):233–56. https://doi.org/10.1016/j.addr.2011.05.003.

    Article  CAS  Google Scholar 

  19. Chang RYK, Chow MY, Khanal D, Chen D, Chan H-K. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Del Rev. 2021. https://doi.org/10.1016/j.addr.2021.02.017.

  20. Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 2018;8(5):1527–44. https://doi.org/10.1007/s13346-018-0550-4.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. https://doi.org/10.1016/j.ajps.2014.09.004.

    Article  Google Scholar 

  22. Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Del Rev. 2014;75:53–80. https://doi.org/10.1016/j.addr.2014.05.001.

    Article  CAS  Google Scholar 

  23. Scalia S, Young PM, Traini D. Solid lipid microparticles as an approach to drug delivery. Expert Opin Drug Deliv. 2015;12(4):583–99. https://doi.org/10.1517/17425247.2015.980812.

    Article  CAS  PubMed  Google Scholar 

  24. Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opin Drug Deliv. 2005;2(1):75–87. https://doi.org/10.1517/17425247.2.1.75.

    Article  CAS  PubMed  Google Scholar 

  25. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, Langer R, Edwards DA. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42. https://doi.org/10.1023/A:1018910200420.

    Article  CAS  PubMed  Google Scholar 

  26. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39. https://doi.org/10.1016/S0168-3659(00)00362-X.

    Article  CAS  PubMed  Google Scholar 

  27. Minne A, Boireau H, Horta MJ, Vanbever R. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients. Eur J Pharm Biopharm. 2008;70(3):839–44. https://doi.org/10.1016/j.ejpb.2008.06.013.

    Article  CAS  PubMed  Google Scholar 

  28. Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23(5):931–40. https://doi.org/10.1007/s11095-006-9789-4.

    Article  CAS  PubMed  Google Scholar 

  29. Eleftheriadis GK, Akrivou M, Bouropoulos N, Tsibouklis J, Vizirianakis IS, Fatouros DG. Polymer–Lipid microparticles for pulmonary delivery. Langmuir. 2018;34(11):3438–48. https://doi.org/10.1021/acs.langmuir.7b03645.

    Article  CAS  PubMed  Google Scholar 

  30. Shetty N, Hou J, Yanez E, Shur J, Cheng J, Sun CC, Nagapudi K, Narang AS. Effect of lipidic excipients on the particle properties and aerosol performance of high drug load spray dried particles for inhalation. J Pharm Sci. 2021. https://doi.org/10.1016/j.xphs.2021.09.004.

  31. Jaspart S, Bertholet P, Piel G, Dogné J-M, Delattre L, Evrard B. Solid lipid microparticles as a sustained release system for pulmonary drug delivery. Eur J Pharm Biopharm. 2007;65(1):47–56. https://doi.org/10.1016/j.ejpb.2006.07.006.

    Article  CAS  PubMed  Google Scholar 

  32. Scalia S, Salama R, Young P, Traini D. Preparation and in vitro evaluation of salbutamol-loaded lipid microparticles for sustained release pulmonary therapy. J Microencapsul. 2012;29(3):225–33. https://doi.org/10.3109/02652048.2011.646326.

    Article  CAS  PubMed  Google Scholar 

  33. Mezzena M, Scalia S, Young PM, Traini D. Solid lipid budesonide microparticles for controlled release inhalation therapy. AAPS J. 2009;11(4):771–8. https://doi.org/10.1208/s12248-009-9148-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scalia S, Haghi M, Losi V, Trotta V, Young PM, Traini D. Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. Eur J Pharm Sci. 2013;49(2):278–85. https://doi.org/10.1016/j.ejps.2013.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maretti E, Rossi T, Bondi M, Croce MA, Hanuskova M, Leo E, Sacchetti F, Iannuccelli V. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. Int J Pharm. 2014;462(1–2):74–82. https://doi.org/10.1016/j.ijpharm.2013.12.034.

    Article  CAS  PubMed  Google Scholar 

  36. Weers J, Tarara T. The PulmoSphere™ platform for pulmonary drug delivery. Ther Deliv. 2014;5(3):277–95. https://doi.org/10.4155/tde.14.3.

    Article  CAS  PubMed  Google Scholar 

  37. Weers JG, Miller DP, Tarara TE. Spray-dried PulmoSphere™ formulations for inhalation comprising crystalline drug particles. AAPS PharmSciTech. 2019;20(3). https://doi.org/10.1208/s12249-018-1280-0.

  38. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J Aerosol Med Pulm Drug Deliv. 2011;24(4):175–82. https://doi.org/10.1089/jamp.2010.0855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller DP, Tan T, Tarara TE, Nakamura J, Malcolmson RJ, Weers JG. Physical characterization of tobramycin inhalation powder: I. rational design of a stable engineered-particle formulation for delivery to the lungs. Mol Pharm. 2015;12(8):2582–93. https://doi.org/10.1021/acs.molpharmaceut.5b00147.

    Article  CAS  PubMed  Google Scholar 

  40. Tarara TE, Hartman MS, Gill H, Kennedy AA, Weers JG. Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res. 2004;21(9):1607–14. https://doi.org/10.1023/B:PHAM.0000041455.13980.f1.

    Article  CAS  PubMed  Google Scholar 

  41. Vehring R, Lechuga-Ballesteros D, Joshi V, Noga B, Dwivedi SK. Cosuspensions of microcrystals and engineered microparticles for uniform and efficient delivery of respiratory therapeutics from pressurized metered dose inhalers. Langmuir. 2012;28(42):15015–23. https://doi.org/10.1021/la302281n.

    Article  CAS  PubMed  Google Scholar 

  42. Fisher AB. Lung lipid composition and surfactant biology. In: Parent RA, editor. Comparative biology of the normal lung: Academic Press; 2015. p. 423–66. https://doi.org/10.1016/B978-0-12-404577-4.00022-9.

    Chapter  Google Scholar 

  43. Praphawatvet T, Peters JI, Williams RO III. Inhaled nanoparticles - an updated review. Int J Pharm. 2020;119671. https://doi.org/10.1016/j.ijpharm.2020.119671.

  44. D’Sa D, Williams L, Speck J, Dwivedi S, Lechuga D. Thermodynamic and structural effects of CaCl2 on the phase transitions and structures of Distearoyl-phosphatidylcholine (DSPC) by differential scanning calorimetry and X-ray diffraction. In.AAPS Annual Meeting and Exposition. Washington, DC, US; 2011.

  45. Corzo C, Fuchsbichler A, Savencu I, Urich JA, Zimmer A, Lochmann D, Reyer S, Salar-Behzadi S. Lipid-microparticles for pulmonary delivery of active pharmaceutical ingredients: impact of lipid crystallization on spray-drying processability. Int J Pharm. 2021;121259. https://doi.org/10.1016/j.ijpharm.2021.121259.

  46. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochimica et Biophysica Acta (BBA)-reviews on. Biomembranes. 1998;1376(1):91–145. https://doi.org/10.1016/S0304-4157(98)00006-9.

    Article  CAS  Google Scholar 

  47. Marsh D. Handbook of lipid bilayers, 2nd Edition: CRC press; 2013. https://doi.org/10.1201/b11712.

  48. Janiak MJ, Small DM, Shipley GG. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979;254(13):6068–78. https://doi.org/10.1016/S0021-9258(18)50520-2.

    Article  CAS  PubMed  Google Scholar 

  49. Marsh D. General features of phospholipid phase transitions. Chem Phys Lipids. 1991;57(2):109–20. https://doi.org/10.1016/0009-3084(91)90071-I.

    Article  CAS  PubMed  Google Scholar 

  50. Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9(1):467–508. https://doi.org/10.1146/annurev.bb.09.060180.002343.

    Article  CAS  PubMed  Google Scholar 

  51. Ivey J. Particle formation from evaporating microdroplets for inhaled drug delivery. In. Mechanical engineering. Edmonton, Alberta: University of Alberta; 2018. https://doi.org/10.7939/R3RB6WJ3S.

  52. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri E, Matinkhoo S, Finlay WH, Vehring R. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery. Pharm Res. 2014;31(2):449–65. https://doi.org/10.1007/s11095-013-1174-5.

    Article  CAS  PubMed  Google Scholar 

  53. Carrigy NB, Liang L, Wang H, Kariuki S, Nagel TE, Connerton IF, Vehring R. Trileucine and pullulan improve anti-Campylobacter bacteriophage stability in engineered spray-dried microparticles. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02435-6.

  54. Wang H, Bhambri P, Ivey J, Vehring R. Design and pharmaceutical applications of a low-flow-rate single-nozzle impactor. Int J Pharm. 2017;533(1):14–25. https://doi.org/10.1016/j.ijpharm.2017.09.047.

    Article  CAS  PubMed  Google Scholar 

  55. Rouquerol F, Rouquerol J, Sing KS, Llewellyn P, Maurin G. Adsorption by powders and porous solids: principles, Methodology and applications: Academic press; 2014. https://doi.org/10.1016/B978-0-08-097035-6.00007-3.

  56. Carrigy NB, Ordoubadi M, Liu Y, Melhem O, Barona D, Wang H, Milburn L, Ruzycki CA, Finlay WH, Vehring R. Amorphous pullulan trehalose microparticle platform for respiratory delivery. Int J Pharm. 2019;563:156–68. https://doi.org/10.1016/j.ijpharm.2019.04.004.

    Article  CAS  PubMed  Google Scholar 

  57. Pharmacopeia US. <601> Aerosols, nasal sprays, metered dose inhalers, and dry powder inhalers. Rockville: In.US Pharmacopeial Convention; 2012.

    Google Scholar 

  58. Javaheri E, Shemirani FM, Pichelin M, Katz IM, Caillibotte G, Vehring R, Finlay WH. Deposition modeling of hygroscopic saline aerosols in the human respiratory tract: comparison between air and helium–oxygen as carrier gases. J Aerosol Sci. 2013;64:81–93. https://doi.org/10.1016/j.jaerosci.2013.04.010.

    Article  CAS  Google Scholar 

  59. Ruzycki CA, Murphy B, Nathoo H, Finlay WH, Martin AR. Combined in vitro-in silico approach to predict deposition and pharmacokinetics of budesonide dry powder inhalers. Pharm Res. 2020;37(10):1–19. https://doi.org/10.1007/s11095-020-02924-7.

    Article  CAS  Google Scholar 

  60. Tavernini S, Farina DJ, Martin AR, Finlay WH. Using filters to estimate regional lung deposition with dry powder inhalers. Pharm Res. 2021;38(9):1601–13. https://doi.org/10.1007/s11095-021-03082-0.

    Article  CAS  PubMed  Google Scholar 

  61. Vierros S, Sammalkorpi M. Phosphatidylcholine reverse micelles on the wrong track in molecular dynamics simulations of phospholipids in an organic solvent. J Chem Phys. 2015;142(9):094902. https://doi.org/10.1063/1.4914022.

    Article  CAS  PubMed  Google Scholar 

  62. Pichot R, Watson RL, Norton IT. Phospholipids at the interface: current trends and challenges. Int J Mol Sci. 2013;14(6):11767–94. https://doi.org/10.3390/ijms140611767.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang H, Nobes DS, Vehring R. Particle surface roughness improves colloidal stability of pressurized pharmaceutical suspensions. Pharm Res. 2019;36(3):43. https://doi.org/10.1007/s11095-019-2572-0.

    Article  CAS  PubMed  Google Scholar 

  64. Baldelli A, Vehring R. Analysis of cohesion forces between monodisperse microparticles with rough surfaces. Colloids Surf Physicochem Eng Aspects. 2016;506:179–89. https://doi.org/10.1016/j.colsurfa.2016.06.009.

    Article  CAS  Google Scholar 

  65. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46. https://doi.org/10.1016/j.jaerosci.2007.04.005.

    Article  CAS  Google Scholar 

  66. Wang H, Tan P, Barona D, Li G, Hoe S, Lechuga-Ballesteros D, Nobes DS, Vehring R. Characterization of the suspension stability of pharmaceuticals using a shadowgraphic imaging method. Int J Pharm. 2018;548(1):128–38. https://doi.org/10.1016/j.ijpharm.2018.06.053.

    Article  CAS  PubMed  Google Scholar 

  67. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, Gill H, Weers JG. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17(2):168–74. https://doi.org/10.1023/A:1007513213292.

    Article  CAS  PubMed  Google Scholar 

  68. Lechuga-Ballesteros D, Vehring R, Dwivedi S. A new co-suspension MDI platform: scientific foundations of mono, dual and triple combination products. In Respiratory Drug Delivery Europe. 2011:101–12.

  69. Adi S, Adi H, Chan H-K, Tong Z, Yang R, Yu A. Effects of mechanical impaction on aerosol performance of particles with different surface roughness. Powder Technol. 2013;236:164–70. https://doi.org/10.1016/j.powtec.2012.02.051.

    Article  CAS  Google Scholar 

  70. Newman S, Busse W. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96(5):293–304. https://doi.org/10.1053/rmed.2001.1276.

    Article  CAS  PubMed  Google Scholar 

  71. Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19(4):473–83. https://doi.org/10.1089/jam.2006.19.473.

    Article  PubMed  Google Scholar 

  72. Clark AR, Weers JG, Dhand R. The confusing world of dry powder inhalers: it is all about inspiratory pressures, not inspiratory flow rates. J Aerosol Med Pulm Drug Deliv. 2020;33(1):1–11. https://doi.org/10.1089/jamp.2019.1556.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ung KT, Chan H-K. Effects of ramp-up of inspired airflow on in vitro aerosol dose delivery performance for certain dry powder inhalers. Eur J Pharm Sci. 2016;84:46–54. https://doi.org/10.1016/j.ejps.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors acknowledge the language editing provided by Luba Slabyj. PC, KL, NC, DLB are employees of AstraZeneca and may own stock or stock options. The authors declare no conflict of interest.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada through its Collaborative Research & Development program (Grant CRDPJ 543336–19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Vehring.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ordoubadi, M., Connaughton, P. et al. Spray Dried Rugose Lipid Particle Platform for Respiratory Drug Delivery. Pharm Res 39, 805–823 (2022). https://doi.org/10.1007/s11095-022-03242-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03242-w

Key Words

Navigation