Skip to main content

Advertisement

Log in

Predicting Leachables Solubilization in Polysorbate 80 Solutions by a Linear Solvation Energy Relationship (LSER)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A linear solvation energy relationship (LSER) was developed to predict the partitioning of neutral chemicals from polysorbate 80 (PS 80) micelles to water. Predicted partition coefficients were converted to a concentration dependent solubilization strength of aqueous PS 80 solutions. This solubilization strength represents a key parameter to project equilibrium levels of leaching from pharmaceutical plastic materials.

Methods

To construct the LSER model equation, partition coefficients between PS 80 micelles and water were measured via a reference phase method or collected from the literature. Multiple linear regression of partition coefficients against five publicly available solute parameters was used to obtain the LSER system parameters.

Results

112 chemically diverse compounds were incorporated for LSER model regression. The model equation shows a very good fit (R2 = 0.969, SD = 0.219) for the entire dataset. The accuracy of the multi-parameter LSER model was proven to be substantially better in comparison to a single-parameter log-linear model based on the octanol-water partition coefficient.

Conclusion

PS 80 solubilization strength in water can expediently and accurately be calculated for neutral organic compounds with the proposed LSER model. LSER system parameters provide insightful chemical information with respect to solubilization in aqueous solutions of PS 80.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jones MT, Mahler HC, Yadav S, Bindra D, Corvari V, Fesinmeyer RM, et al. Considerations for the Use of Polysorbates in Biopharmaceuticals. Pharm Res. 2018;35(8). https://doi.org/10.1007/s11095-018-2430-5.

  2. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients: Libros Digitales-Pharmaceutical Press; 2009.

    Google Scholar 

  3. Zhang C, Zheng G, Nichols CM. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions. Environ Sci Technol. 2006;40(1):208–14. https://doi.org/10.1021/es051387e.

    Article  CAS  PubMed  Google Scholar 

  4. Laster J, Bonnes SL, Rocha J. Increased use of emulsifiers in processed foods and the links to obesity. Curr Gastroenterol Rep. 2019;21(11). https://doi.org/10.1007/s11894-019-0723-4.

  5. Gervasi V, Dall Agnol R, Cullen S, McCoy T, Vucen S, Crean A. Parenteral protein formulations: an overview of approved products within the European Union. Eur J Pharm Biopharm. 2018;131:8–24. https://doi.org/10.1016/j.ejpb.2018.07.011.

    Article  CAS  PubMed  Google Scholar 

  6. Nema S, Brendel RJ. Excipients and their role in approved injectable products: current usage and future directions. PDA J Pharm Sci Technol. 2011;65(3):287–332. https://doi.org/10.5731/pdajpst.2011.00634.

    Article  CAS  PubMed  Google Scholar 

  7. Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv. 2019;37(7). https://doi.org/10.1016/j.biotechadv.2019.06.011.

  8. Brovč EV, Mravljak J, Šink R, Pajk S. Rational design to biologics development: the polysorbates point of view. Int J Pharm. 2020;581:119285. https://doi.org/10.1016/j.ijpharm.2020.119285.

    Article  CAS  PubMed  Google Scholar 

  9. Yu X, Decou D, Wood D, Zdravkovic S, Schmidt H, Stockmeier L, et al. A study of leachables for biopharmaceutical formulations stored in rubber-stoppered glass vials. BioPharm Int. 2010;23(4):26–36.

    Google Scholar 

  10. Jenke D, Liu N, Hua Y, Swanson S, Bogseth R. A means of establishing and justifying binary ethanol/water mixtures as simulating solvents in Extractables studies. PDA J Pharm Sci Technol. 2015;69(3):366–82. https://doi.org/10.5731/pdajpst.2015.01046.

    Article  CAS  PubMed  Google Scholar 

  11. Zdravkovic SA. Comparison of the Solubilization properties of Polysorbate 80 and isopropanol/water solvent Systems for Organic Compounds Extracted from three pharmaceutical packaging configurations. Eur J Pharm Sci. 2016;93:475–83. https://doi.org/10.1016/j.ejps.2016.08.052.

    Article  CAS  PubMed  Google Scholar 

  12. Tanford C. Theory of micelle formation in aqueous solutions. J Phys Chem. 1974;78(24):2469–79. https://doi.org/10.1021/j100617a012.

    Article  CAS  Google Scholar 

  13. Sepulveda L, Lissi E, Quina F. Interactions of neutral molecules with ionic micelles. Adv Colloid Interf Sci. 1986;25(C):1–57. https://doi.org/10.1016/0001-8686(86)80001-X.

    Article  CAS  Google Scholar 

  14. Tiefenbach KJ, Durchschlag H, Jaenicke R. Spectroscopic and hydrodynamic investigations of nonionic and zwitterionic detergents. Progr Colloid Polym Sci. 1999:135–41.

  15. Moulik SP, Gupta S, Das AR. Hydration studies on some polyhydroxy non-electrolytes and non-ionic surfactants. Can J Chem. 1989;67(2):356–64. https://doi.org/10.1139/v89-058.

    Article  CAS  Google Scholar 

  16. Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22(2):73–83. https://doi.org/10.1039/CS9932200073.

    Article  CAS  Google Scholar 

  17. Sprunger L, Acree WE Jr, Abraham MH. Linear free energy relationship correlation of the distribution of solutes between water and sodium dodecyl sulfate (SDS) micelles and between gas and SDS micelles. J Chem Inf Model. 2007;47(5):1808–17. https://doi.org/10.1021/ci700174q.

    Article  CAS  PubMed  Google Scholar 

  18. Sprunger LM, Gibbs J, Acree WE Jr, Abraham MH. Linear free energy relationship correlation of the distribution of solutes between water and Cetytrimethylammonium bromide (CTAB) micelles. QSAR Comb Sci. 2009;28(1):72–88. https://doi.org/10.1002/qsar.200860098.

    Article  CAS  Google Scholar 

  19. Ulrich N, Endo S, Brown TN, Watanabe N, Bronner G, Abraham MH, et al. UFZ-LSER database v 3.2 [Internet]. 2017.

  20. Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A. 2004;1037(1–2):29–47. https://doi.org/10.1016/j.chroma.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  21. Dearden JC, Bresnen GM. The measurement of partition coefficients. Quant Struct Act Relationsh. 1988;7(3):133–44. https://doi.org/10.1002/qsar.19880070304.

    Article  CAS  Google Scholar 

  22. Berthod A, Garcia-Alvarez-Coque C. Micellar Liquid Chromatography: Taylor & Francis; 2000.

    Book  Google Scholar 

  23. Sallee VL. Apparent monomer activity of saturated fatty acids in micellar bile salt solutions measured by a polyethylene partitioning system. J Lipid Res. 1974;15(1):56–64.

    Article  CAS  Google Scholar 

  24. Hussam A, Basu SC, Hixon M, Olumee Z. General method for the study of solute-surfactant association equilibria of volatile solutes by head space gas chromatography. Anal Chem. 1995;67(8):1459–64. https://doi.org/10.1021/ac00104a024.

    Article  CAS  Google Scholar 

  25. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. J Chem Soc, Perkin Trans 2. 1994;8:1777–91. https://doi.org/10.1039/p29940001777.

    Article  Google Scholar 

  26. Hefter GT, Tomkins, RPT. The Experimental Determination of Solubilities. 2005.

  27. Luning Prak DJ. Solubilization of nitrotoluenes in micellar nonionic surfactant solutions. Chemosphere. 2007;68(10):1961–7. https://doi.org/10.1016/j.chemosphere.2007.02.029.

    Article  CAS  Google Scholar 

  28. Feng S, Catron ND, Zhu AD, Lipari JM, Wu J, Gao Y, et al. Predictive modeling of micellar Solubilization by single and mixed nonionic surfactants. J Pharm Sci. 2018;107(8):2079–90. https://doi.org/10.1016/j.xphs.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng KY, Wong JWC. Effect of synthetic surfactants on the solubilization and distribution of PAHS in water/soil-water systems. Environ Technol. 2006;27(8):835–44. https://doi.org/10.1080/09593332708618695.

    Article  CAS  PubMed  Google Scholar 

  30. Kawakami K, Oda N, Miyoshi K, Funaki T, Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur J Pharm Sci. 2006;28(1–2):7–14. https://doi.org/10.1016/j.ejps.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Zhao L. Cosolubilization of non-polar drugs in polysorbate 80 solutions. Int J Pharm. 2002;249(1–2):211–7. https://doi.org/10.1016/S0378-5173(02)00524-0.

    Article  CAS  PubMed  Google Scholar 

  32. Li P, Zhao L. Solubilization of flurbiprofen in pH-surfactant solutions. J Pharm Sci. 2003;92(5):951–6. https://doi.org/10.1002/jps.10360.

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues R, Betelu S, Colombano S, Masselot G, Tzedakis T, Ignatiadis I. Influence of temperature and surfactants on the Solubilization of Hexachlorobutadiene and Hexachloroethane. J Chem Eng Data. 2017;62(10):3252–60. https://doi.org/10.1021/acs.jced.7b00320.

    Article  CAS  Google Scholar 

  34. Liu C, Desai KGH, Tang X, Chen X. Solubility of rofecoxib in the presence of aqueous solutions of glycerol, propylene glycol, ethanol, span 20, tween 80, and sodium lauryl sulfate at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2005;50(6):2061–4. https://doi.org/10.1021/je050276s.

    Article  CAS  Google Scholar 

  35. Hadžiabdić J, Elezović A, Imamović B, Bečić E. The improvement of lorazepam solubility by cosolvency, micellization and complexation. Jordan J Pharm Sci. 2012;5(2):141–54.

    Google Scholar 

  36. Ismail AA, Gouda MW, Motawi MM. Micellar solubilization of barbiturates I: Solubilities of certain barbiturates in polysorbates of varying hydrophobic chain length. J Pharm Sci. 1970;59(2):220–4. https://doi.org/10.1002/jps.2600590216.

    Article  CAS  PubMed  Google Scholar 

  37. Ahsan SS, Blaug SM. Interactions of tweens with some pharmaceuticals. Drug Stand. 1960;28:95–100.

    CAS  PubMed  Google Scholar 

  38. Hamid IA, Parrott EL. Effect of temperature on solubilization and hydrolytic degradation of solubilized benzocaine and homatropine. J Pharm Sci. 1971;60(6):901–6. https://doi.org/10.1002/jps.2600600620.

    Article  CAS  PubMed  Google Scholar 

  39. Patel NK, Kostenbauder HB. Interaction of Preservatives with Macromolecules I.: Binding of Parahydroxybenzoic Acid Esters by Polyoxyethylene 20 Sorbitan Monooleate (Tween 80). J Am Pharm Assoc (Sci ed). 1958;47(4):289–93. https://doi.org/10.1002/jps.3030470420.

    Article  CAS  Google Scholar 

  40. Shihab FA, Ebian AR, Mustafa RM. Effect of polyethylene glycol, sodium lauryl sulfate and polysorbate-80 on the solubility of furosemide. Int J Pharm. 1979;4(1):13–20. https://doi.org/10.1016/0378-5173(79)90093-0.

    Article  CAS  Google Scholar 

  41. Sjökvist E, Nyström C, Aldén M, Caram-Lelham N. Physicochemical aspects of drug release. XIV. The effects of some ionic and non-ionic surfactants on properties of a sparingly soluble drug in solid dispersions. Int J Pharm. 1992;79(1–3):123–33. https://doi.org/10.1016/0378-5173(92)90103-9.

    Article  Google Scholar 

  42. Gerakis AM, Koupparis MA, Efstathiou CE. Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs. J Pharm Biomed Anal. 1993;11(1):33–41. https://doi.org/10.1016/0731-7085(93)80146-R.

    Article  CAS  PubMed  Google Scholar 

  43. Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm. 2018;44(4):677–86. https://doi.org/10.1080/03639045.2017.1408642.

    Article  CAS  PubMed  Google Scholar 

  44. Long J, Li L, Jin Y, Sun H, Zheng Y, Tian S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of a photoresponsive surfactant and a conventional non-ionic surfactant. Sep Purif Technol. 2016;160:11–7.

    Article  CAS  Google Scholar 

  45. Goss K-U, Schwarzenbach RP. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol. 2001;35(1):1–9. https://doi.org/10.1021/es000996d.

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez-Núñez FA, Yalkowsky SH. Relationship between Polysorbate 80 solubilization descriptors and octanol-water partition coefficients of drugs. Int J Pharm. 2000;200(2):217–22. https://doi.org/10.1016/S0378-5173(00)00386-0.

    Article  PubMed  Google Scholar 

  47. Abraham MH, Acree JWE. The transfer of neutral molecules, ions and ionic species from water to wet octanol. Phys Chem Chem Phys. 2010;12(40):13182–8.

    Article  CAS  Google Scholar 

  48. Tani TH, Moore JM, Patapoff TW. Single step method for the accurate concentration determination of polysorbate 80. J Chromatogr A. 1997;786(1):99–106. https://doi.org/10.1016/S0021-9673(97)00540-2.

    Article  CAS  Google Scholar 

  49. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35. https://doi.org/10.1002/jps.21190.

    Article  CAS  PubMed  Google Scholar 

  50. Christiansen A, Backensfeld T, Kühn S, Weitschies W. Stability of the non-ionic surfactant polysorbate 80 investigated by HPLC-MS and charged aerosol detector. Pharmazie. 2011;66(9):666–71. https://doi.org/10.1691/ph.2011.1033.

    Article  CAS  PubMed  Google Scholar 

  51. Braun AC, Ilko D, Merget B, Gieseler H, Germershaus O, Holzgrabe U, Meinel L. Predicting critical micelle concentration and micelle molecular weight of polysorbate 80 using compendial methods. Eur J Pharm Biopharm. 2015;94:559–68. https://doi.org/10.1016/j.ejpb.2014.12.015.

    Article  CAS  PubMed  Google Scholar 

  52. Ilko D, Braun A, Germershaus O, Meinel L, Holzgrabe U. Fatty acid composition analysis in polysorbate 80 with high performance liquid chromatography coupled to charged aerosol detection. Eur J Pharm Biopharm. 2015;94:569–74. https://doi.org/10.1016/j.ejpb.2014.11.018.

    Article  CAS  PubMed  Google Scholar 

  53. Samaha MW, Gadalla MAF. Solubilization of carbamazepin by different classes of nonionic surfactants and a bile salt. Drug Dev Ind Pharm. 1987;13(1):93–112. https://doi.org/10.3109/03639048709040158.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by Boehringer Ingelheim. The authors report no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Egert.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobel, A.B., Egert, T. & Langguth, P. Predicting Leachables Solubilization in Polysorbate 80 Solutions by a Linear Solvation Energy Relationship (LSER). Pharm Res 38, 1549–1561 (2021). https://doi.org/10.1007/s11095-021-03096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03096-8

Key Words

Navigation