Skip to main content

Advertisement

Log in

Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods.

Methods

In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations.

Results

Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (ki,u) of ≤1.5 μmol. L−1. A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%.

Conclusion

A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin’s poor bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

Area under the plasma concentration-time curve

CML:

Chronic myeloid leukaemia

CYP:

Cytochrome P450

fuinc :

Unbound fraction during incubation

HIM:

Human intestinal microsomes

HLM:

Human liver microsomes

IVIVE:

In Vitro to In Vivo extrapolation

ki :

Inhibitory constant

M5:

N-desmethyl bosutinib

NDMI:

N-desmethyl imatinib

PBPK:

Physiologically-based pharmacokinetic

POR:

P450 reductase

rCYP3A4:

Recombinant human CYP3A4 enzyme

SLN:

Solid lipid nanoparticles

SULT:

Sulphotransferase

UGT:

Uridine 5′-diphospho-glucuronosyltransferase

References

  1. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chuah C, Kim DW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018;36(3):231–7.

    CAS  PubMed  Google Scholar 

  3. Fleischer T, Chang TT, Chiang JH, Chang CM, Hsieh CY, Yen HR. Adjunctive Chinese herbal medicine therapy improves survival of patients with chronic myeloid leukemia: a nationwide population-based cohort study. Cancer Med. 2016;5(4):640–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roe AL, Paine MF, Gurley BJ, Brouwer KR, Jordan S, Griffiths JC. Assessing natural product-drug interactions: an end-to-end safety framework. Regul Toxicol Pharmacol. 2016;76:1–6.

    CAS  PubMed  Google Scholar 

  5. Salehi B, Stojanovic-Radic Z, Matejic J, Sharifi-Rad M, Anil Kumar NV, Martins N, et al. The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem. 2019;163:527–45.

    CAS  PubMed  Google Scholar 

  6. Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. 2017;13(9):953–72.

    CAS  PubMed  Google Scholar 

  7. Johnson EJ, Gonzalez-Perez V, Tian DD, Lin YS, Unadkat JD, Rettie AE, et al. Selection of priority natural products for evaluation as potential precipitants of natural product-drug interactions: a NAPDI center recommended approach. Drug Metab Dispos. 2018;46(7):1046–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, et al. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an In Vivo inhibitor of BCRP. Br J Pharmacol. 2012;166(6):1793–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee CA, O'Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos. 2015;43(4):490–509.

    CAS  PubMed  Google Scholar 

  10. Volak LP, Hanley MJ, Masse G, Hazarika S, Harmatz JS, Badmaev V, et al. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2013;75(2):450–62.

    CAS  PubMed  Google Scholar 

  11. Hussaarts K, Hurkmans DP, Oomen-de Hoop E, van Harten LJ, Berghuis S, van Alphen RJ, et al. Impact of curcumin (with or without piperine) on the pharmacokinetics of tamoxifen. Cancers (Basel). 2019; 11(3), 403:1–12.

  12. Kennedy J, Wang CC, Wu CH. Patient disclosure about herb and supplement use among adults in the US. Evid Based Complement Alternat Med. 2008;5(4):451–6.

    PubMed  Google Scholar 

  13. Hsueh CH, Hsu V, Pan Y, Zhao P. Predictive performance of physiologically-based pharmacokinetic models in predicting drug-drug interactions involving enzyme modulation. Clin Pharmacokinet. 2018;57(10):1337–46.

    CAS  PubMed  Google Scholar 

  14. Grimstein M, Yang Y, Zhang X, Grillo J, Huang SM, Zineh I, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology. J Pharm Sci. 2019;108(1):21–5.

    CAS  PubMed  Google Scholar 

  15. Brantley SJ, Gufford BT, Dua R, Fediuk DJ, Graf TN, Scarlett YV, et al. Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction. CPT Pharmacometrics Syst Pharmacol. 2014;3:e107.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Adiwidjaja J, Boddy AV, McLachlan AJ. Physiologically based pharmacokinetic modelling of hyperforin to predict drug interactions with St John's wort. Clin Pharmacokinet. 2019;58(7):911–26.

    CAS  PubMed  Google Scholar 

  17. Parmentier Y, Pothier C, Delmas A, Caradec F, Trancart MM, Guillet F, et al. Direct and quantitative evaluation of the human CYP3A4 contribution (fm) to drug clearance using the In Vitro silensomes model. Xenobiotica. 2017;47(7):562–75.

  18. Filppula AM, Neuvonen M, Laitila J, Neuvonen PJ, Backman JT. Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response. Drug Metab Dispos. 2013;41(1):50–9.

    CAS  PubMed  Google Scholar 

  19. Arellano C, Gandia P, Lafont T, Jongejan R, Chatelut E. Determination of unbound fraction of imatinib and N-desmethyl imatinib, validation of an UPLC-MS/MS assay and ultrafiltration method. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;907:94–100.

    CAS  PubMed  Google Scholar 

  20. Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem. 2010;58(4):2095–9.

    CAS  PubMed  Google Scholar 

  21. Haupt LJ, Kazmi F, Ogilvie BW, Buckley DB, Smith BD, Leatherman S, et al. The reliability of estimating ki values for direct, reversible inhibition of cytochrome P450 enzymes from corresponding IC50 values: a retrospective analysis of 343 experiments. Drug Metab Dispos. 2015;43(11):1744–50.

    CAS  PubMed  Google Scholar 

  22. Turner DB. Rostami-Hodjegan A. Rowland-Yeo K. Prediction of non-specific hepatic microsomal binding from readily available physicochemical properties: Tucker GT; 2006. https://www.certara.com/wp-content/uploads/Resources/Posters/DavidISSX2006.pdf

    Google Scholar 

  23. Venkatakrishnan K, von Moltke LL, Obach RS, Greenblatt DJ. Drug metabolism and drug interactions: application and clinical value of In Vitro models. Curr Drug Metab. 2003;4(5):423–59.

  24. Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113–204.

    CAS  PubMed  Google Scholar 

  25. Guri A, Gulseren I, Corredig M. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells. Food Funct. 2013;4(9):1410–9.

    CAS  PubMed  Google Scholar 

  26. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, et al. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev. 2008;17(6):1411–7.

    CAS  Google Scholar 

  27. Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul PN. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol. 2002;64(4):573–82.

    CAS  PubMed  Google Scholar 

  28. Wattanachai N, Polasek TM, Heath TM, Uchaipichat V, Tassaneeyakul W, Tassaneeyakul W, et al. In Vitro-In Vivo extrapolation of CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation: effects of albumin on In Vitro kinetic parameters and assessment of interindividual variability in predicted clearance. Eur J Clin Pharmacol. 2011;67(8):815–24.

  29. Hossain MA, Tran T, Chen T, Mikus G, Greenblatt DJ. Inhibition of human cytochromes P450 In Vitro by ritonavir and cobicistat. J Pharm Pharmacol. 2017;69(12):1786–93.

  30. Kerdpin O, Elliot DJ, Boye SL, Birkett DJ, Yoovathaworn K, Miners JO. Differential contribution of active site residues in substrate recognition sites 1 and 5 to cytochrome P450 2C8 substrate selectivity and regioselectivity. Biochemistry. 2004;43(24):7834–42.

    CAS  PubMed  Google Scholar 

  31. Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos. 2011;39(4):644–52.

    CAS  PubMed  Google Scholar 

  32. Jamei M, Marciniak S, Edwards D, Wragg K, Feng K, Barnett A, et al. The Simcyp population based simulator: architecture, implementation, and quality assurance. In Silico Pharmacol. 2013;1:9.

    PubMed  PubMed Central  Google Scholar 

  33. Pulla Reddy AC, Sudharshan E, Appu Rao AG, Lokesh BR. Interaction of curcumin with human serum albumin--a spectroscopic study. Lipids. 1999;34(10):1025–9.

    CAS  PubMed  Google Scholar 

  34. Rodgers T, Rowland M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res. 2007;24(5):918–33.

    CAS  PubMed  Google Scholar 

  35. Darwich AS, Neuhoff S, Jamei M, Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "advanced dissolution, absorption, metabolism (ADAM)" model. Curr Drug Metab. 2010;11(9):716–29.

    CAS  PubMed  Google Scholar 

  36. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Couto N, Al-Majdoub ZM, Gibson S, Davies PJ, Achour B, Harwood MD, et al. Quantitative proteomics of clinically relevant drug-metabolizing enzymes and drug transporters and their intercorrelations in the human small intestine. Drug Metab Dispos. 2020;48(4):245–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Drozdzik M, Groer C, Penski J, Lapczuk J, Ostrowski M, Lai Y, et al. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol Pharm. 2014;11(10):3547–55.

    CAS  PubMed  Google Scholar 

  39. Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica. 1978;8(12):761–8.

    CAS  PubMed  Google Scholar 

  40. Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat In Vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;61(3):1058–64.

  41. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27(4):486–94.

    CAS  PubMed  Google Scholar 

  42. Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomark Prev. 2002;11(1):105–11.

    CAS  Google Scholar 

  43. Hoehle SI, Pfeiffer E, Metzler M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res. 2007;51(8):932–8.

    CAS  PubMed  Google Scholar 

  44. Bolger GT, Licollari A, Tan A, Greil R, Vcelar B, Greil-Ressler S, et al. Pharmacokinetics of liposomal curcumin (Lipocurc) infusion: effect of co-medication in cancer patients and comparison with healthy individuals. Cancer Chemother Pharmacol. 2019;83(2):265–75.

    CAS  PubMed  Google Scholar 

  45. Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther. 2015;53(1):54–65.

    CAS  PubMed  Google Scholar 

  46. Houston JB. Drug metabolite kinetics. Pharmacol Ther. 1981;15(3):521–52.

    CAS  PubMed  Google Scholar 

  47. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

    CAS  PubMed  Google Scholar 

  48. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.

    CAS  PubMed  Google Scholar 

  49. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl. 2005;11(12):1481–93.

    PubMed  Google Scholar 

  50. Hatley OJ, Jones CR, Galetin A, Rostami-Hodjegan A. Quantifying gut wall metabolism: methodology matters. Biopharm Drug Dispos. 2017;38(2):155–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Adiwidjaja J, Boddy AV, McLachlan AJ. Implementation of a physiologically based pharmacokinetic modelling approach to guide optimal dosing regimens for imatinib and potential drug interactions in paediatrics. Front Pharmacol. 1672;2020(10):1–18.

    Google Scholar 

  52. Ono C, Hsyu PH, Abbas R, Loi CM, Yamazaki S. Application of physiologically based pharmacokinetic modeling to the understanding of bosutinib pharmacokinetics: prediction of drug-drug and drug-disease interactions. Drug Metab Dispos. 2017;45(4):390–8.

    CAS  PubMed  Google Scholar 

  53. Gufford BT, Chen G, Lazarus P, Graf TN, Oberlies NH, Paine MF. Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab Dispos. 2014;42(10):1675–83.

    PubMed  PubMed Central  Google Scholar 

  54. Greil R, Greil-Ressler S, Weiss L, Schonlieb C, Magnes T, Radl B, et al. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or metastatic cancer. Cancer Chemother Pharmacol. 2018;82(4):695–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60(5):1620–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng D, Li W, Wang L, Lin T, Poiani G, Wassef A, et al. Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Mol Pharm. 2019;16(5):1881–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vieira ML, Kirby B, Ragueneau-Majlessi I, Galetin A, Chien JY, Einolf HJ, et al. Evaluation of various static In Vitro-In Vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–98.

  58. Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT, Houston JB, Galetin A. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fahmi OA, Hurst S, Plowchalk D, Cook J, Guo F, Youdim K, et al. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 In Vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–66.

  60. Rowland-Yeo K, Jamei M, Rostami-Hodjegan A. Predicting drug-drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach. Expert Rev Clin Pharmacol. 2013;6(2):143–57.

    Google Scholar 

  61. Einolf HJ, Chen L, Fahmi OA, Gibson CR, Obach RS, Shebley M, et al. Evaluation of various static and dynamic modeling methods to predict clinical CYP3A induction using In Vitro CYP3A4 mRNA induction data. Clin Pharmacol Ther. 2014;95(2):179–88.

  62. Mach CM, Chen JH, Mosley SA, Kurzrock R, Smith JA. Evaluation of liposomal curcumin cytochrome P450 metabolism. Anticancer Res. 2010;30(3):811–4.

    CAS  PubMed  Google Scholar 

  63. Liu Y, Ramirez J, Ratain MJ. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol. 2011;71(6):917–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim DW, Tan EY, Jin Y, Park S, Hayes M, Demirhan E, et al. Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia. Br J Clin Pharmacol. 2011;71(2):199–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng X, Cai D, Zeng Q, Chen Z, Zhong G, Zhuo J, et al. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat. Biopharm Drug Dispos. 2017;38(1):3–19.

    CAS  PubMed  Google Scholar 

  66. Gao Y, Chen G, Luan X, Zou M, Piao H, Cheng G. Improved oral absorption of poorly soluble curcumin via the concomitant use of borneol. AAPS PharmSciTech. 2019;20(4):150.

    PubMed  Google Scholar 

  67. Moeller T, Six C, Dennell S, Rose T, Watt C. Demographic differences by age, BMI, gender and disease states of phase I and phase II enzyme activities in cryopreserved human hepatocytes. The Toxicologist: Supplement to Toxicological Sciences. 2013; 132(1):Abstract no. 305.

  68. Badee J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The ontogeny of UDP-glucuronosyltransferase enzymes, recommendations for future profiling studies and application through physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2019;58(2):189–211.

    CAS  PubMed  Google Scholar 

  69. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6):629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cox KH, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 2015;29(5):642–51.

    CAS  PubMed  Google Scholar 

  71. Gupte PA, Giramkar SA, Harke SM, Kulkarni SK, Deshmukh AP, Hingorani LL, et al. Evaluation of the efficacy and safety of capsule Longvida® optimized curcumin (solid lipid curcumin particles) in knee osteoarthritis: a pilot clinical study. J Inflamm Res. 2019;12:145–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dadhaniya P, Patel C, Muchhara J, Bhadja N, Mathuria N, Vachhani K, et al. Safety assessment of a solid lipid curcumin particle preparation: acute and subchronic toxicity studies. Food Chem Toxicol. 2011;49(8):1834–42.

    CAS  PubMed  Google Scholar 

  73. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.

    PubMed  PubMed Central  Google Scholar 

  74. He X, Mo L, Li ZY, Tan ZR, Chen Y, Ouyang DS. Effects of curcumin on the pharmacokinetics of talinolol in human with ABCB1 polymorphism. Xenobiotica. 2012;42(12):1248–54.

    CAS  PubMed  Google Scholar 

  75. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.

    CAS  PubMed  Google Scholar 

  76. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine. 2017;12:6027–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ait-Oudhia S, Mager DE, Straubinger RM. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics. 2014;6(1):137–74.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

The In Vitro study was supported by a research grant from Indonesia Endowment Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia. J.A. is receiving a postgraduate scholarship from Indonesia Endowment Fund for Education (LPDP). Certara UK Limited (Simcyp Division) is gratefully acknowledged for providing the access to the Simcyp Simulator. There are no competing interests to declare.

Author information

Authors and Affiliations

Authors

Contributions

J.A., A.V.B. and A.J.M. designed the research and contributed to the interpretation. J.A. performed the simulations and In Vitro experiments, analysed the data and drafted the manuscript. A.V.B. and A.J.M. critically revised the manuscript.

Corresponding author

Correspondence to Jeffry Adiwidjaja.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 639 kb)

ESM 2

(XLSX 6912 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiwidjaja, J., Boddy, A.V. & McLachlan, A.J. Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect. Pharm Res 37, 128 (2020). https://doi.org/10.1007/s11095-020-02834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02834-8

Keywords

Navigation