Skip to main content

Advertisement

Log in

Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Zonisamide clinical indications are expanding beyond the classic treatment of epileptic seizures to Parkinson’s disease and other neurodegenerative diseases. However, the systemic safety profile of zonisamide may compromise its use as a first-line drug in any clinical condition. Since zonisamide is marketed as oral formulations, the present study aimed at exploring the potential of the intranasal route to centrally administer zonisamide, evaluating the systemic bioavailability of zonisamide and comparing its brain, lung and kidney pharmacokinetics after intranasal, oral and intravenous administrations.

Methods

In vitro cell studies demonstrated that zonisamide and proposed thermoreversible gels did not affect the viability of RPMI 2650 or Calu-3 cells. Thereafter, male CD-1 mice were randomly administered with zonisamide by oral (80 mg/kg), intranasal or intravenous (16.7 mg/kg) route. At predefined time points, animals were sacrificed and plasma and tissues were collected to quantify zonisamide and describe its pharmacokinetics.

Results

Intranasal route revealed a low absolute bioavailability (54.95%) but the highest value of the ratio between the area under the curve (AUC) between brain and plasma, suggesting lower systemic adverse events and non-inferior effects in central nervous system comparatively to intravenous and oral routes. Furthermore, drug targeting efficiency and direct transport percentage into the brain were 149.54% and 33.13%, respectively, corroborating that a significant fraction of zonisamide suffers direct nose-to-brain transport. Lung and kidney exposures obtained after intranasal administration were lower than those observed after intravenous injection.

Conclusions

This pre-clinical investigation demonstrates a direct nose-to-brain delivery of zonisamide, which may be a promising strategy for the treatment of central diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under drug concentration-time curve

AUCt :

Area under drug concentration-time curve from time zero to the time of last measurable concentration

AUCextrap :

Extrapolated area under drug concentration-time curve

AUCinf :

area under drug concentration-time curve from time zero to infinity

BBB:

Blood-brain barrier

BbrainIN/IV :

Brain bioavailability between IN and IV routes

Cmax :

Maximum concentration

CNS:

Central nervous system

CYP:

Cytochrome P450

CV:

Coefficient of variation

DRE:

Drug-resistant epilepsy

DTE:

Drug targeting efficiency

DTP:

Direct transport percentage

FAbs :

Absolute bioavailability

FRel :

Relative bioavailability

HPLC:

High performance liquid chromatography

IN:

Intranasal

IV:

Intravenous

LLOQ:

Lower limit of quantification

SD:

Standard deviation

SEM:

Standard error of the mean

SMPA:

Sulfamoylacetylphenol glucuronide

tmax :

Time to reach the maximum concentration

References

  1. Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim SE, et al. Efficacy, tolerability, and blood concentration of zonisamide in daily clinical practice. J Clin Neurosci. 2019;61:44–7.

    Article  CAS  PubMed  Google Scholar 

  2. Sano H, Nambu A. The effects of zonisamide on L-DOPA-induced dyskinesia in Parkinson's disease model mice. Neurochem Int. 2019;124:171–80.

    Article  CAS  PubMed  Google Scholar 

  3. Iwaki H, Tagawa M, Iwasaki K, Kawakami K, Nomoto M. Comparison of zonisamide with non-levodopa, anti-Parkinson's disease drugs in the incidence of Parkinson's disease-relevant symptoms. J Neurol Sci. 2019;402:145–52.

    Article  CAS  PubMed  Google Scholar 

  4. Nishijima H, Miki Y, Ueno S, Tomiyama M. Zonisamide enhances motor effects of levodopa, not of Apomorphine, in a rat model of Parkinson's disease. Parkinson’s Dis. 2018;2018:8626783.

    Google Scholar 

  5. Limmer AL, Holland LC, Loftus BD. Zonisamide for cluster headache prophylaxis: a case series. Headache. 2019;59(6):924–9.

    Article  PubMed  Google Scholar 

  6. Martinez-Avila JC, Garcia Bartolome A, Garcia I, Dapia I, Tong HY, Diaz L, et al. Pharmacometabolomics applied to zonisamide pharmacokinetic parameter prediction. Metabol: Off J Metabol Soc. 2018;14(5):70.

    Article  CAS  Google Scholar 

  7. Kanner AM, Ashman E, Gloss D, Harden C, Bourgeois B, Bautista JF, et al. Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs I: treatment of new-onset epilepsy: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology and the American Epilepsy Society. Neurology. 2018;91(2):74–81.

    Article  CAS  PubMed  Google Scholar 

  8. Hershey LA, Coleman-Jackson R. Pharmacological Management of Dementia with Lewy bodies. Drugs Aging. 2019;36(4):309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sano H, Murata M, Nambu A. Zonisamide reduces nigrostriatal dopaminergic neurodegeneration in a mouse genetic model of Parkinson's disease. J Neurochem. 2015;134(2):371–81.

    Article  CAS  PubMed  Google Scholar 

  10. Reimers A, Ljung H. An evaluation of zonisamide, including its long-term efficacy, for the treatment of focal epilepsy. Expert Opin Pharmacother. 2019;20(8):909–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kubota M, Nishi-Nagase M, Sakakihara Y, Noma S, Nakamoto M, Kawaguchi H, et al. Zonisamide - induced urinary lithiasis in patients with intractable epilepsy. Brain Dev. 2000;22(4):230–3.

    Article  CAS  PubMed  Google Scholar 

  12. Jion YI, Raff A, Grosberg BM, Evans RW. The risk and management of kidney stones from the use of topiramate and zonisamide in migraine and idiopathic intracranial hypertension. Headache. 2015;55(1):161–6.

    Article  PubMed  Google Scholar 

  13. Bejjanki H, Bird V, Ruchi R. Letter to the editor regarding the manuscript "efficacy, tolerability, and blood concentration of zonisamide in daily clinical practice". J Clin Neurosci: Off J Neurosurg Soc Aust. 2019;63:283.

    Article  Google Scholar 

  14. Sills G, Brodie M. Pharmacokinetics and drug interactions with zonisamide. Epilepsia. 2007;48(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  15. McCleane G. Pharmacological management of neuropathic pain. CNS drugs. 2003;17(14):1031–43.

    Article  CAS  PubMed  Google Scholar 

  16. Levy RH, Ragueneau-Majlessi I, Garnett WR, Schmerler M, Rosenfeld W, Shah J, et al. Lack of a clinically significant effect of zonisamide on phenytoin steady-state pharmacokinetics in patients with epilepsy. J Clin Pharmacol. 2004;44(11):1230–4.

    Article  CAS  PubMed  Google Scholar 

  17. Frampton JE, Scott LJ. Zonisamide: a review of its use in the management of partial seizures in epilepsy. CNS drugs. 2005;19(4):347–67.

    Article  CAS  PubMed  Google Scholar 

  18. Nakasa H, Nakamura H, Ono S, Tsutsui M, Kiuchi M, Ohmori S, et al. Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol. 1998;54(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  19. Loscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia. 2009;50(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  20. Saruwatari J, Ishitsu T, Nakagawa K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals (Basel, Switzerland). 2010;3(8):2709–32.

  21. Goto S, Seo T, Murata T, Nakada N, Ueda N, Ishitsu T, et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit. 2007;29(1):118–21.

    Article  CAS  PubMed  Google Scholar 

  22. Vitorino C, Silva S, Bicker J, Falcao A, Fortuna A. Antidepressants and nose-to-brain delivery: drivers, restraints, opportunities and challenges. Drug Discov Today. 2019;24(9):1911–23.

    Article  CAS  PubMed  Google Scholar 

  23. Goncalves J, Bicker J, Gouveia F, Liberal J, Oliveira RC, Alves G, et al. Nose-to-brain delivery of levetiracetam after intranasal administration to mice. Int J Pharm. 2019;564:329–39.

    Article  CAS  PubMed  Google Scholar 

  24. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2019.

  25. Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570:118635.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Xiong G, Tsang WC, Schatzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370(3):593–601.

    Article  CAS  PubMed  Google Scholar 

  27. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Rel: Off J Control Rel Soc. 2018;281:139–77.

    Article  CAS  Google Scholar 

  28. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52.

    Article  CAS  PubMed  Google Scholar 

  29. Romanelli MC, Gelardi M, Fiorella ML, Tattoli L, Di Vella G, Solarino B. Nasal ciliary motility: a new tool in estimating the time of death. Int J Legal Med. 2012;126(3):427–33.

    Article  PubMed  Google Scholar 

  30. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421–6.

    Article  CAS  PubMed  Google Scholar 

  31. Goncalves J, Alves G, Bicker J, Falcao A, Fortuna A. Development and full validation of an innovative HPLC-diode array detection technique to simultaneously quantify lacosamide, levetiracetam and zonisamide in human plasma. Bioanalysis. 2018;10(8):541–57.

    Article  CAS  PubMed  Google Scholar 

  32. EMA. Guideline on bioanalytical method validation. 2012.

  33. EMA. ICH Harmonised Guideline M10 on Bioanalytical Method Validation - step 2b. 2019.

  34. FDA. Bioanalytical Method Validation Guidance for Industry. 2018.

  35. Raval N, Barai P, Acharya N, Acharya S. Fabrication of peptide-linked albumin nanoconstructs for receptor-mediated delivery of asiatic acid to the brain as a preventive measure in cognitive impairment: optimization, in-vitro and in-vivo evaluation. Artificial cells, nanomedicine, and biotechnology. 2018;46(sup3):S832-s46.

  36. Fatouh AM, Elshafeey AH, Abdelbary A. Agomelatine-based in situ gels for brain targeting via the nasal route: statistical optimization, in vitro, and in vivo evaluation. Drug Del. 2017;24(1):1077–85.

    Article  CAS  Google Scholar 

  37. Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des, Devel Ther. 2017;11:1815–25.

    Article  CAS  Google Scholar 

  38. Katare YK, Piazza JE, Bhandari J, Daya RP, Akilan K, Simpson MJ, et al. Intranasal delivery of antipsychotic drugs. Schizophr Res. 2017;184:2–13.

    Article  PubMed  Google Scholar 

  39. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Rel: Off J Control Rel Soc. 2014;189:133–40.

    Article  CAS  Google Scholar 

  40. Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Rel: Off J Control Rel Soc. 2018;270:89–100.

    Article  CAS  Google Scholar 

  41. Fortuna A, Alves G, Serralheiro A, Sousa J, Falcao A. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88(1):8–27.

    Article  CAS  PubMed  Google Scholar 

  42. Serralheiro A, Alves G, Fortuna A, Falcao A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm. 2015;490(1–2):39–46.

    Article  CAS  PubMed  Google Scholar 

  43. Sousa J, Alves G. Intranasal Del Topically-Acting Levofloxacin Rats: Proof-of-Conc Pharmacok Study. 2017;34(11):2260–9.

    CAS  Google Scholar 

  44. Cunha-Filho MS, Alvarez-Lorenzo C, Martinez-Pacheco R, Landin M. Temperature-sensitive gels for intratumoral delivery of beta-lapachone: effect of cyclodextrins and ethanol. TheScientificWorldJournal. 2012;2012:126723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnurch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Del. 2018;15(10):1007–19.

    Article  CAS  Google Scholar 

  46. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus guidelines for therapeutic drug monitoring in Neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51(1–02):e1.

    CAS  PubMed  Google Scholar 

  47. Jacob S, Nair AB. An updated overview on therapeutic drug monitoring of recent antiepileptic drugs. Drugs in R&D. 2016;16(4):303–16.

    Article  CAS  Google Scholar 

  48. Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-Pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17(3):493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–77.

    Article  CAS  PubMed  Google Scholar 

  50. Leandro K, Bicker J, Alves G, Falcao A, Fortuna A. ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res. 2019;144:357–76.

    Article  CAS  PubMed  Google Scholar 

  51. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2015;35(3):371–81.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge to Fundo Europeu de Desenvolvimento Regional (FEDER) funds through Portugal 2020 in the scope of the Operational Programme for Competitiveness and Internationalisation, and Fundação para a Ciência e Tecnologia (FCT) I.P./MCTES, Portuguese Agency for Scientific Research, through national funds (PIDDAC) within the scope of the research project CENTRO-01-0145-FEDER-03075 and POCI-01-0145-FEDER-030478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Fortuna.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, J., Alves, G., Carona, A. et al. Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration. Pharm Res 37, 74 (2020). https://doi.org/10.1007/s11095-020-02786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02786-z

KEY WORDS

Navigation