Skip to main content

Advertisement

Log in

Novel Approach for the Bioequivalence Assessment of Topical Cream Formulations: Model-Based Analysis of Tape Stripping Data Correctly Concludes BE and BIE

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was (a) to suggest a novel dermatopharmacokinetic (DPK) approach from which pharmacokinetic parameters relevant to the bioequivalence (BE) assessment of a topical formulation can be deduced while circumventing the need for numerous measurements and assumptions, and (b) to investigate whether this approach enables the correct conclusion of BE and bioinequivalence (BIE).

Methods

Bioequivalent and bioinequivalent formulations of acyclovir were compared versus a reference product (Zovirax®). Tape Stripping was conducted at only one dose duration during the uptake phase to generate drug content in stratum corneum versus time profiles, each time point corresponding to one stripped layer. Nonlinear mixed effect modeling (ADAPT5®) (MLEM algorithm) was used to fit the DPK data and to estimate the rate (Kin) and extent (FS) of drug absorption/input into the skin. Results were evaluated using the average BE approach.

Results

Estimated exposure metrics were within the usual BE limits for the bioequivalent formulation (FS: 102.4 [90%CI: 97.5–107.7]; Kin: 94.2 [90%CI: 83.7–106.0]), but outside those limits for the bioinequivalent formulation (FS: 43.4 [90%CI: 27.9–67.6]; Kin: 54.5 [90%CI: 36.6–81.1]).

Conclusions

The proposed novel DPK approach was shown to be successful, robust and applicable to assess BE and BIE correctly between topical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Studied ACV creams are locally effective topical formulations; therefore, input into the skin should be preferred over absorption which is rather reflective of systemic exposure. For the purpose of simplicity, however, absorption and input into the skin may interchangeably be used throughout this text.

Abbreviations

ACV:

Acyclovir

API:

Active pharmaceutical ingredient

AUC:

Area Under Curve

BA:

Bioavailability

BE:

Bioequivalence/Bioequivalent

BIE:

Bioinequivalence/Bioinequivalent

Cmax :

Maximum concentration

CPT:

Compartment

CV:

Coefficient of variation

DD:

Dose Duration

DPK:

Dermatopharmacokinetics

ED 50 :

The dose duration at which 50% of Emax is obtained

E max :

Maximum effect

FDA:

Food and Drug Administration

FS :

Extent of absorption/input into the skin

GMR:

Geometric Mean Ratio

GOF:

Goodness-of-Fit

HV:

Healthy volunteers

IOV:

Inter-Occasion Variability

IPRED:

Individual-level predictions

Kdiff :

Diffusion rate constant

Kin :

First-order absorption/input rate constant into the skin

Kout :

Diffusion rate constant out from the last compartment

Max:

Maximum

Min:

Minimum

ML:

Maximum Likelihood

MLEM:

Maximum Likelihood Expectation Maximization

MOF:

Minimum Value of the Objective Function

PK:

Pharmacokinetics

Pop:

Population

PRED:

Population-level predictions

Qmax :

Maximum amount

Ref:

Reference

RLD:

Reference Listed Drug

RP:

Reference Product

SC:

Stratum Corneum

STS:

Standard 2-Stage

TOST:

Two One-Sided Tests

TS:

Tape Stripping

VPC:

Visual Predictive Check

WRES:

Weighted residuals

References

  1. Chen ML, Lesko L, Williams RL. Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet. 2001;40(8):565–72.

    Article  CAS  PubMed  Google Scholar 

  2. Herkenne C, Alberti I, Naik A, Kalia YN, Mathy F-X, Préat V, et al. In vivo methods for the assessment of topical drug bioavailability. Pharm Res. 2007;25(1):87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Alberti I, Kalia YN, Naik A, Guy RH. Assessment and prediction of the cutaneous bioavailability of topical Terbinafine, in vivo, in man. Pharm Res. 2001;18(10):1472–5.

    Article  CAS  PubMed  Google Scholar 

  4. Borsadia S, Ghanem AH, Seta Y, Higuchi WI, Flynn GL, Behl CR, et al. Factors to be considered in the evaluation of bioavailability and bioequivalence of topical formulations. Skin Pharmacol. 1992;5(3):129–45.

    Article  CAS  PubMed  Google Scholar 

  5. Yacobi A, Shah VP, Bashaw ED, Benfeldt E, Davit B, Ganes D, et al. Current challenges in bioequivalence, quality, and novel assessment technologies for topical products. Pharm Res. 2014;31(4):837–46.

    Article  CAS  PubMed  Google Scholar 

  6. Shah VP, Flynn GL, Yacobi A, Maibach HI, Bon C, Fleischer NM, et al. Bioequivalence of topical dermatological dosage forms-methods of evaluation of bioequivalence. Pharm Res. 1998;15(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  7. United States Food and Drug Administration, Title 21 Code of Federal Regulations (CFR) Part 320, Section 24. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=320.24. Accessed 8 Feb 2018.

  8. Braddy AC, Davit BM, Stier EM, Conner DP. Survey of international regulatory bioequivalence recommendations for approval of generic topical dermatological drug products. AAPS J. 2015;17(1):121–33.

    Article  PubMed  Google Scholar 

  9. Rougier A, Dupuis D, Lotte C, Roguet R, Wester RC, Maibach HI. Regional variation in percutaneous absorption in man: measurement by the stripping method. Arch Dermatol Res. 1986;278(6):465–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rougier A, Dupuis D, Lotte C, Roguet R, Schaefer H. In vivo correlation between stratum corneum reservoir function and percutaneous absorption. J Invest Dermatol. 1983;81(3):275–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rougier A, Rallis M, Krien P, Lotte C. In vivo percutaneous absorption: a key role for stratum corneum/vehicle partitioning. Arch Dermatol Res. 1990;282(8):498–505.

    Article  CAS  PubMed  Google Scholar 

  12. Rougier A, Lotte C, Maibach HI. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J Pharm Sci. 1987;76(6):451–4.

    Article  CAS  PubMed  Google Scholar 

  13. Raney SG, Franz TJ, Lehman PA, Lionberger R, Chen M-L. Pharmacokinetics-based approaches for bioequivalence evaluation of topical dermatological drug products. Clin Pharmacokinet. 2015;54(11):1095–106.

    Article  CAS  PubMed  Google Scholar 

  14. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Dermatopharmacokinetic prediction of topical drug bioavailability in vivo. J Invest Dermatol. 2007;127(4):887–94.

    Article  CAS  PubMed  Google Scholar 

  15. Pershing LK, Bakhtian S, Poncelet CE, Corlett JL, Shah VP. Comparison of skin stripping, in vitro release, and skin blanching response methods to measure dose response and similarity of triamcinolone acetonide cream strengths from two manufactured sources. J Pharm Sci. 2002;91(5):1312–23.

    Article  CAS  PubMed  Google Scholar 

  16. US-FDA Guidance for Industry: Topical dermatologic drug product NDAs and ANDAs-in vivo bioavailability, bioequivalence, in vitro release, and associated studies, 1998. Bethesda (MD): Center for Drug Evaluation and Research, FDA.

  17. Franz TJ. Study #1, Avita gel 0.025% vs Retin-A gel 0.025%. Transcribed presentation to the Advisory Committee for Pharmaceutical Sciences Meeting, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Rockville, MD, November 29, 2001. Transcript of presentation. pp. 47–61. http://www.fda.gov/ohrms/dockets/ac/01/transcripts/3804t2_01_Morning_Session.pdf. Accessed 8 Feb 2018.

  18. Pershing LK, Nelson JL, Corlett JL, Shrivastava SP, Hare DB, Shah VP. Assessment of dermatopharmacokinetic approach in the bioequivalence determination of topical tretinoin gel products. J Am Acad Dermatol. 2003;48(5):740–51.

    Article  PubMed  Google Scholar 

  19. Kalia YN, Alberti I, Sekkat N, Curdy C, Naik A, Guy RH. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharm Res. 2000;17(9):1148–50.

    Article  CAS  PubMed  Google Scholar 

  20. Pirot F, Berardesca E, Kalia YN, Singh M, Maibach HI, Guy RH. Stratum corneum thickness and apparent water diffusivity: facile and noninvasive quantitation in vivo. Pharm Res. 1998;15(3):492–4.

    Article  CAS  PubMed  Google Scholar 

  21. Alberti I, Kalia YN, Naik A, Bonny J, Guy RH. Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int J Pharm. 2001;219(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  22. Pirot F, Kalia YN, Stinchcomb AL, Keating G, Bunge A, Guy RH. Characterization of the permeability barrier of human skin in vivo. Proc Natl Acad Sci U S A. 1997;94(4):1562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cordery SF, Pensado A, Chiu WS, Shehab MZ, Bunge AL, Delgado-Charro MB, et al. Topical bioavailability of diclofenac from locally-acting, dermatological formulations. Int J Pharm. 2017;529(1–2):55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N’Dri-Stempfer B, Navidi WC, Guy RH, Bunge AL. Improved bioequivalence assessment of topical dermatological drug products using Dermatopharmacokinetics. Pharm Res. 2008;26(2):316.

    Article  PubMed  CAS  Google Scholar 

  25. N'Dri-Stempfer B, Navidi WC, Guy RH, Bunge AL. Optimizing metrics for the assessment of bioequivalence between topical drug products. Pharm Res. 2009;25(7):1621–30.

    Article  CAS  Google Scholar 

  26. Navidi W, Hutchinson A, N’Dri-Stempfer B, Bunge A. Determining bioequivalence of topical dermatological drug products by tape-stripping. J Pharmacokinet Pharmacodyn. 2008;35(3):337.

    Article  PubMed  Google Scholar 

  27. Bunge A, N’Dri-Stempfer B, Navidi W, Guy R. Final report to food and drug administration (FDA): therapeutic equivalence of topical products, Colorado School of Mines, Golden, Colorado. 2007.

  28. Nallagundla S, Patnala S, Kanfer I. Application of an optimized tape stripping method for the bioequivalence assessment of topical acyclovir creams. AAPS PharmSciTech. 2018;19(4):1567–73.

    Article  CAS  PubMed  Google Scholar 

  29. Parfitt NR, Skinner MF, Bon C, Kanfer I. Bioequivalence of topical clotrimazole formulations: an improved tape stripping method. J Pharm Pharm Sci. 2011;14(3):347–57.

    Article  CAS  PubMed  Google Scholar 

  30. Au WL, Skinner M, Kanfer I. Comparison of tape stripping with the human skin blanching assay for the bioequivalence assessment of topical clobetasol propionate formulations. J Pharm Pharm Sci. 2010;13(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  31. Riku J, Muranushi N. Japan. In: Kanfer I, editor. Bioequivalence Requirements in Various Global Jurisdictions. Cham: Springer International Publishing; 2017. p. 127–58.

    Chapter  Google Scholar 

  32. Kanfer I. Methods for the assessment of bioequivalence of topical dosage forms: correlations, optimization strategies, and innovative approaches. In: Shah VP, Maibach HI, Jenner J, editors. Topical drug bioavailability, bioequivalence, and penetration. New York: Springer New York; 2014. p. 113–51.

    Google Scholar 

  33. Kanfer I, Tettey-Amlalo RNO, Au WL, Hughes-Formella B. Assessment of topical dosage forms intended for local or regional activity. In: Shargel L, Kanfer I, editors. Generic drug product development specialty dosage forms. New York: Informa Healthcare USA; 2010. p. 54–103.

    Google Scholar 

  34. D'Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User’s guide: pharmacokinetic/Pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.

    Google Scholar 

  35. Schuirmann DJ. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm. 1987;15(6):657–80.

    Article  CAS  PubMed  Google Scholar 

  36. FDA Draft Guidance on Warfarin Sodium. Guidelines, bioequivalence recommendation for specific products. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm201283.pdf. Accessed 22 May 2018.

  37. Russell LM, Guy RH. Measurement and prediction of the rate and extent of drug delivery into and through the skin. Expert Opin Drug Deliv. 2009;6(4):355–69.

    Article  CAS  PubMed  Google Scholar 

  38. Olsen EA. A double-blind controlled comparison of generic and trade-name topical steroids using the vasoconstriction assay. Arch Dermatol. 1991;127(2):197–201.

    Article  CAS  PubMed  Google Scholar 

  39. Pinkus H. Examination of the epidermis by the strip method of removing horny layers. I. Observations on thickness of the horny layer, and on mitotic activity after stripping. J Invest Dermatol. 1951;16(6):383–6.

    Article  CAS  PubMed  Google Scholar 

  40. Duan JZ. Pharmacokinetics of Oral absorption. In: Shargel L, Yu ABC, editors. Applied Biopharmaceutics & Pharmacokinetics; pharmacokinetics, 7e. New York: McGraw-Hill Education; 2016.

    Google Scholar 

  41. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702–47.

    Article  CAS  PubMed  Google Scholar 

  42. Elias PM. Epidermal lipids, membranes, and keratinization. Int J Dermatol. 1981;20(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  43. Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J. 1996;71(5):2692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reddy MB, Stinchcomb AL, Guy RH, Bunge AL. Determining dermal absorption parameters in vivo from tape strip data. Pharm Res. 2002;19(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  45. de Araujo TP, Fittipaldi IM, Bedor DCG, Duarte ML, Cordery SF, Guy RH, et al. Topical bio(in)equivalence of metronidazole formulations in vivo. Int J Pharm. 2018;541(1–2):167–72.

    Article  PubMed  CAS  Google Scholar 

  46. Crank J. Diffusion in a plane sheet. The mathematics of diffusion. London: Oxford University Press; 1975. p. 44–68.

    Google Scholar 

  47. Tsai JC, Cheng CL, Tsai YF, Sheu HM, Chou CH. Evaluation of in vivo bioequivalence methodology for topical clobetasol 17-propionate based on pharmacodynamic modeling using Chinese skin. J Pharm Sci. 2004;93(1):207–17.

    Article  CAS  PubMed  Google Scholar 

  48. Fradette C, Lavigne J, Waters D, Ducharme MP. The utility of the population approach applied to bioequivalence in patients: comparison of 2 formulations of cyclosporine. Ther Drug Monit. 2005;27(5):592–600.

    Article  CAS  PubMed  Google Scholar 

  49. Panhard X, Mentre F. Evaluation by simulation of tests based on non-linear mixed-effects models in pharmacokinetic interaction and bioequivalence cross-over trials. Stat Med. 2005;24(10):1509–24.

    Article  PubMed  Google Scholar 

  50. Alberti I, Kalia YN, Naik A, Bonny J-D, Guy RH. In vivo assessment of enhanced topical delivery of terbinafine to human stratum corneum. J Control Release. 2001;71(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  51. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Pig ear skin ex vivo as a model for in vivo Dermatopharmacokinetic studies in man. Pharm Res. 2006;23(8):1850–6.

    Article  CAS  PubMed  Google Scholar 

  52. Wiedersberg S, Naik A, Leopold CS, Guy RH. Pharmacodynamics and dermatopharmacokinetics of betamethasone 17-valerate: assessment of topical bioavailability. Br J Dermatol. 2009;160(3):676–86.

    Article  CAS  PubMed  Google Scholar 

  53. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 2008;97(1):185–97.

    Article  CAS  PubMed  Google Scholar 

  54. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison. J Invest Dermatol. 2007;127(1):135–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray P. Ducharme.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdin, D., Kanfer, I. & Ducharme, M.P. Novel Approach for the Bioequivalence Assessment of Topical Cream Formulations: Model-Based Analysis of Tape Stripping Data Correctly Concludes BE and BIE. Pharm Res 37, 20 (2020). https://doi.org/10.1007/s11095-019-2724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2724-2

KEY WORDS

Navigation