Skip to main content
Log in

The Duration of Nerve Block from Local Anesthetic Formulations in Male and Female Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

It is unknown whether there are sex differences in response to free or encapsulated local anesthetics.

Methods

We examined nerve block duration and toxicity following peripheral nerve blockade in male and female rats. We studied the local anesthetic bupivacaine (free or encapsulated) as well as tetrodotoxin, which acts on a different site of the same voltage-gated channel.

Results

Sensory nerve blockade was 158.5 [139–190] minutes (median [interquartile range]) (males) compared to 173 [134–171] minutes (females) (p = 0.702) following bupivacaine injection, N = 8 male, 8 female. Motor nerve blockade was 157 [141–171] minutes (males) compared to 172 [146–320] minutes (females) (p = 0.2786). Micellar bupivacaine (N = 8 male, 8 female) resulted in sensory nerve blockade of 266 [227–320] minutes (males) compared to 285 [239–344] minutes (females) (p = 0.6427). Motor nerve blockade was 264 [251–264] minutes (males) compared to 287 [262–287] minutes (females) (p = 0.3823). Liposomal bupivacaine (N = 8 male, 8 female) resulted in sensory nerve blockade of 240 [207–277] minutes (males) compared to 289 [204–348] minutes (females) (p = 0.1654). Motor nerve blockade was 266 [237–372] minutes (males) compared to 317 [251–356] minutes (females) (p = 0.6671). Following tetrodotoxin injection (N = 12 male,12 female) sensory nerve blockade was 54.8 [5–117] minutes (males) compared to 54 [14–71] minutes (females) (p = 0.6422). Motor nerve blockade was 72 [40–112] minutes (males) compared to 64 [32–143] minutes (females) (p = 0.971).

Conclusions

We found no statistically significant sex differences associated with the formulations tested. In both sexes, durations of nerve block were similar between micellar and liposomal bupivacaine formulations, despite the micellar formulation containing less drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

L-Bup:

Liposomal bupivacaine

M-Bup:

Micelles containing 0.1% bupivacaine

S1SCB:

Site one sodium channel blocker

TEM:

Transmission electron microscope

TM:

Trademark symbol

TTX:

Tetrodotoxin

References

  1. Joshi G, Gandhi K, Shah N, Gadsden J, Corman SL. Peripheral nerve blocks in the management of postoperative pain: challenges and opportunities. J Clin Anesth. 2016;35:524–9.

    Article  CAS  PubMed  Google Scholar 

  2. Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. Mater Today (Kidlington). 2017;20:22–31.

    Article  CAS  Google Scholar 

  3. Hurley RW, Adams MCB. Sex, gender, and pain: an overview of a complex field. Anesth Analg. 2008;107:309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35:565–72.

    Article  PubMed  Google Scholar 

  5. Fillingim RB. Sex, Gender, and Pain. The Senses: A Comprehensive Reference. Elsevier; 2008. pp. 253–7.

  6. Sarton E, Romberg R, Dahan A. Gender differences in morphine pharmacokinetics and dynamics. Adv Exp Med Biol. Boston, MA: Springer US. 2003;523:71–80.

    Article  CAS  PubMed  Google Scholar 

  7. Sarton E, Olofsen E, Romberg R, Hartigh Den J, Kest B, Nieuwenhuijs D, et al. Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthes. 2000;93:1245–54.

    Article  CAS  Google Scholar 

  8. Gan TJ, Glass PS, Sigl J, Sebel P, Payne F, Rosow C, et al. Women emerge from general anesthesia with propofol/alfentanil/nitrous oxide faster than men. Anesthes. 1999;90:1283–7.

    Article  CAS  Google Scholar 

  9. Pleym H, Spigset O, Kharasch ED, Dale O. Gender differences in drug effects: implications for anesthesiologists. Acta Anaesthesiol Scand. John Wiley & Sons, Ltd (10.1111). 2003;47:241–59.

    Article  CAS  PubMed  Google Scholar 

  10. Mogil JS, Chesler EJ, Wilson SG, Juraska JM, Sternberg WF. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev Pergamon. 2000;24:375–89.

    Article  CAS  Google Scholar 

  11. Gioiosa L, Chen X, Watkins R, Klanfer N, Bryant CD, Evans CJ, et al. Sex chromosome complement affects nociception in tests of acute and chronic exposure to morphine in mice. Horm Behav. 2008;53:124–30.

    Article  CAS  PubMed  Google Scholar 

  12. Loyd DR, Wang X, Murphy AZ. Sex differences in micro-opioid receptor expression in the rat midbrain periaqueductal gray are essential for eliciting sex differences in morphine analgesia. J Neurosci Soc Neurosci. 2008;28:14007–17.

    Article  CAS  Google Scholar 

  13. Kobayashi H, Yoshiyama M, Zakoji H, Takeda M, Araki I. Sex differences in the expression profile of acid-sensing ion channels in the mouse urinary bladder: a possible involvement in irritative bladder symptoms. BJU Int. John Wiley & Sons, Ltd (10.1111). 2009;104:1746–51.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zhou Y, Chen H, Feng Z. The effect of sex on the minimum local analgesic concentration of ropivacaine for caudal anesthesia in anorectal surgery. Anesth Analg. 2010;110:1490–3.

    Article  CAS  PubMed  Google Scholar 

  15. Pei Q, Yang Y, Liu Q, Peng Z, Feng Z. Lack of sex difference in minimum local analgesic concentration of ropivacaine for ultrasound-guided supraclavicular brachial plexus block. Med Sci Monit Int Sci Inf, Inc. 2015;21:3459–66.

    Article  CAS  Google Scholar 

  16. Narahashi T. Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed Proc. 1972;31:1124–32.

    CAS  PubMed  Google Scholar 

  17. McAlvin JB, Padera RF, Shankarappa SA, Reznor G, Kwon AH, Chiang HH, et al. Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials. 2014;35:4557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. John Wiley & Sons, Ltd. 2007;96:203–9.

    Article  CAS  PubMed  Google Scholar 

  19. Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release. 2014;190:664–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kohane DS, Yieh J, Lu NT, Langer R, Strichartz GR, Berde CB. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology. 1998;89:119–31.

    Article  CAS  PubMed  Google Scholar 

  22. Wei T, Liu J, Ma H, Cheng Q, Huang Y, Zhao J, et al. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett Am Chem Soc. 2013;13:2528–34.

    Article  CAS  Google Scholar 

  23. Weldon C, Ji T, Nguyen M-T, Rwei A, Wang W, Hao Y, et al. Nanoscale Bupivacaine Formulations to Enhance the Duration and Safety of Intravenous Regional Anesthesia. ACS Nano. 2018.

  24. Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology. 1995;82:1013–25.

    Article  CAS  PubMed  Google Scholar 

  25. Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A. Wiley subscription services, Inc., A Wiley Company. 2006;77:351–61.

    Article  CAS  PubMed  Google Scholar 

  26. Padera R, Bellas E, Tse JY, Hao D, Kohane DS. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology. 2008;108:921–8.

    Article  CAS  PubMed  Google Scholar 

  27. Padera RF, Tse JY, Bellas E, Kohane DS. Tetrodotoxin for prolonged local anesthesia with minimal myotoxicity. Muscle Nerve. Wiley subscription services, Inc., A Wiley Company. 2006;34:747–53.

    Article  CAS  PubMed  Google Scholar 

  28. Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery. Nano Today. 2015;10:451–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abernethy DR, Greenblatt DJ. Impairment of lidocaine clearance in elderly male subjects. J Cardiovasc Pharmacol. 1983;5:1093–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro S, Yang P, Reyes-Vazquez C, Swann A, Dafny N. Sex differences in tail-flick latency of non-stressed and stressed rats. Int J Neurosci Taylor & Francis. 2005;115:1383–95.

    Article  PubMed  Google Scholar 

  31. Terner JM, Barrett AC, Cook CD, Picker MJ. Sex differences in (−)-pentazocine antinociception: comparison to morphine and spiradoline in four rat strains using a thermal nociceptive assay. Behav Pharmacol. 2003;14:77.

    Article  CAS  PubMed  Google Scholar 

  32. Sternberg WF, Smith L, Scorr L. Nociception and antinociception during the first week of life in mice: sex differences and test dependence. J Pain. 2004;5:420–6.

    Article  PubMed  Google Scholar 

  33. Beatty WW, Beatty PA. Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J Comp Physiol Psychol. 1970;73:446–55.

    Article  CAS  PubMed  Google Scholar 

  34. Gunn A, Bobeck EN, Weber C, Morgan MM. The influence of non-nociceptive factors on hot-plate latency in rats. J Pain. 2011;12:222–7.

    Article  PubMed  Google Scholar 

  35. Semple P, Hope DA, Clyburn P, Rodbert A. Relative potency of vecuronium in male and female patients in Britain and Australia. Br J Anaesth. 1994;72:190–4.

    Article  CAS  PubMed  Google Scholar 

  36. Xue FS, Liao X, Liu JH, Tong SY, Zhang YM, Zhang RJ, et al. Dose-response curve and time-course of effect of vecuronium in male and female patients. Br J Anaesth. 1998;80:720–4.

    Article  CAS  PubMed  Google Scholar 

  37. Yamagata K, Sugimura M, Yoshida M, Sekine S, Kawano A, Oyamaguchi A, et al. Estrogens exacerbate nociceptive pain via up-regulation of TRPV1 and ANO1 in trigeminal primary neurons of female rats. Endocrinology. 2016;157:4309–17.

    Article  CAS  PubMed  Google Scholar 

  38. Ryan SM, Maier SF. The estrous cycle and estrogen modulate stress-induced analgesia. Behav Neurosci. 1988;102:371–80.

    Article  CAS  PubMed  Google Scholar 

  39. Riley JL III, Robinson ME, Wise EA, Price D. A meta-analytic review of pain perception across the menstrual cycle. Pain. No longer published by Elsevier. 1999;81:225–35.

    Article  PubMed  Google Scholar 

  40. Datta S, Migliozzi RP, Flanagan HL, Krieger NR. Chronically administered progesterone decreases halothane requirements in rabbits. Anesth Analg. 1989;68:46–50.

    Article  CAS  PubMed  Google Scholar 

  41. Soens M, Wang JC-F, Berta T, Strichartz G. Systemic progesterone Administration in Early Life Alters the Hyperalgesic responses to surgery in the adult: a study on female rats. Anesth Analg. 2015;121:545–55.

    Article  CAS  PubMed  Google Scholar 

  42. Kohane DS, Lipp M, Kinney RC, Lotan N, Langer R. Sciatic nerve blockade with lipid-protein-sugar particles containing bupivacaine. Pharm Res. 2000;17:1243–9.

    Article  CAS  PubMed  Google Scholar 

  43. Epstein-Barash H, Shichor I, Kwon AH, Hall S, Lawlor MW, Langer R, et al. Prolonged duration local anesthesia with minimal toxicity. Proc Natl Acad Sci U S A. 2009;106:7125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zink W, Seif C, Bohl JRE, Hacke N, Braun PM, Sinner B, et al. The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg. 2003;97:1173–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zink W, Bohl JRE, Hacke N, Sinner B, Martin E, Graf BM. The long term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blocks. Anesth Analg. 2005;101:548–54.

    Article  CAS  PubMed  Google Scholar 

  46. Kohane DS, Lu NT, Gökgöl-Kline AC, Shubina M, Kuang Y, Hall S, et al. The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg Anesth Pain Med. 2000;25:52–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This research was funded by NIH R35 GM131728 (to DSK). The authors report no conflicts of interest. K.C. and D.S.K. designed the research, analyzed the date and wrote the manuscript. K.C., L.C.P., and T.J. performed the experimentation. D.Z. performed statistical analysis. All authors read the manuscript and contributed to its final presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Kohane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullion, K., Petishnok, L.C., Ji, T. et al. The Duration of Nerve Block from Local Anesthetic Formulations in Male and Female Rats. Pharm Res 36, 179 (2019). https://doi.org/10.1007/s11095-019-2715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2715-3

Key Words

Navigation