Skip to main content
Log in

Thrifty, Rapid Intestinal Monolayers (TRIM) Using Caco-2 Epithelial Cells for Oral Drug Delivery Experiments

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Caco-2 monolayers are the most common model of the intestinal epithelium and are critical to the development of oral drug delivery strategies and gastrointestinal disease treatments. However, current monolayer systems are cost- and/or time-intensive, hampering progress. This study evaluates two separate methods to reduce resource input: FB Essence as a fetal bovine serum (FBS) alternative and a new, 3-day Caco-2 system deemed “thrifty, rapid intestinal monolayers” (TRIM).

Methods

Caco-2 cells were cultured with FB Essence and compared to cells in 10% FBS for proliferation and monolayer formation. TRIM were compared to commonly-used 21-day and Corning® HTS monolayer systems, as well as mouse intestines, for permeability behavior, epithelial gene expression, and tight junction arrangement.

Results

No amount of FB Essence maintained Caco-2 cells beyond 10 passages. In contrast, TRIM compared favorably in permeability and gene expression to intestinal tissues. Furthermore, TRIM cost $109 and required 1.3 h of time per 24-well plate, compared to $164 and 3.7 h for 21-day monolayers, and $340 plus 1.0 h for the HTS system.

Conclusions

TRIM offer a new approach to generating Caco-2 monolayers that resemble the intestinal epithelium. They are anticipated to accelerate the pace of in vitro intestinal experiments while easing financial burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BIEDE:

Biocoat® Intestinal Epithelium Differentiation Environment

CLDN1:

Claudin 1

DMEM:

Dulbecco’s Modified Eagles Medium

FBE:

FBEssence

FBS:

Fetal bovine serum

FITC-DX4:

4 kDa molecular weight dextran, tagged with fluorescein isothiocyanate

HTS:

Corning® Biocoat® HTS monolayer system

P##:

Passage number ## of Caco-2 cells

PPZ:

1-phenylpiperazine

qPCR:

Quantitative polymerase chain reaction

Rhod123:

Rhodamine 123

SLS:

Sodium lauryl sulfate

TEER:

Transepithelial electrical resistance

TRIM:

Thrifty, rapid intestinal monolayers

ZO-1:

Zonula occludens 1

References

  1. Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Triadou N, Dussaulx E, et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell. 1983;47(323):323–30.

    Google Scholar 

  2. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML. Stammati a., Zucco F. the Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  3. Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4(4):395–411.

    Article  CAS  PubMed  Google Scholar 

  4. Salama NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev. 2006;58(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  5. Morishita M, Peppas N. a. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;11(19–20):905–10.

    Article  CAS  PubMed  Google Scholar 

  6. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319. Available from: https://doi.org/10.1016/j.addr.2016.06.005.

    Article  CAS  PubMed  Google Scholar 

  7. Ball RL, Knapp CM, Whitehead KA. Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: in vitro investigations in a Caco-2 model. PLoS one. 2015;10(7):e0133154 Available from: https://doi.org/10.1371/journal.pone.0133154.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine nanotechnology, biol med. 2015;11(5):1117–32. Available from:. https://doi.org/10.1016/j.nano.2015.02.018.

    Article  CAS  Google Scholar 

  9. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40 Available from: https://doi.org/10.1016/j.biomaterials.2016.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schumann M, Kamel S, Pahlitzsch ML, Lebenheim L, May C, Krauss M, et al. Defective tight junctions in refractory celiac disease. Ann N Y Acad Sci. 2012;1258(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  11. Fisichella M, Bérenguer F, Steinmetz G, Auffan M, Rose J, Prat O. Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in Caco-2 cells. Part Fibre Toxicol. 2012;9(1):39 Available from: https://doi.org/10.1186/1743-8977-9-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu H, Huang Q. Investigation of the cytotoxicity of food-grade nanoemulsions in Caco-2 cell monolayers and HepG2 cells. Food Chem. 2013;141(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  13. Konsoula R, Barile F. a. Correlation of in vitro cytotoxicity with paracellular permeability in mortal rat intestinal cells. J Pharmacol Toxicol Methods. 2007;55(2):176–83.

    Article  CAS  PubMed  Google Scholar 

  14. Press B, Di Grandi D. Permeability for intestinal absorption: Caco-2 assay and related issues. Curr Drug Metab. 2008;9(9):893–900.

    Article  CAS  PubMed  Google Scholar 

  15. Volpe DA. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci. 2008;97(2):712–25.

    Article  CAS  PubMed  Google Scholar 

  16. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. 2011;73:283–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Artursson P, Palm K, Luthmanb K. Caco-2 monolayers in experimental and theoretical drug transport predictions of drug transport. Adv Drug Deliv Rev. 2001;46(96):27–43.

    Article  CAS  PubMed  Google Scholar 

  18. Natoli M, Leoni BD, D’Agnano I, Zucco F, Felsani A. Good Caco-2 cell culture practices. Toxicol in Vitro. 2012;26(8):1243–6 Available from: https://doi.org/10.1016/j.tiv.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  19. Chong S, Dando SA, Morrison RA. Evaluation of Biocoat intestinal epithelium differentiation environment (3-day cultured Caco-2 cells) as an absorption screening model with improved screening productivity. Pharm Res. 1997;14:1835–7.

  20. Lentz KA, Hayashi J, Lucisano LJ, Polli JE. Development of a more rapid, reduced serum culture system for Caco-2 monolayers and application to the biopharmaceutics classification system. Int J Pharm. 2000;200(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.

    Article  CAS  PubMed  Google Scholar 

  22. Yamashita S, Konishi K, Yamazaki Y, Taki Y, Sakane T, Sezaki H, et al. New and better protocols for a short-term Caco-2 cell culture system. J Pharm Sci. 2002;91(3):669–79.

    Article  CAS  PubMed  Google Scholar 

  23. Bravo SA, Nielsen CU, Amstrup J, Frokjaer S, Brodin B. In-depth evaluation of Gly-Sar transport parameters as a function of culture time in the Caco-2 cell model. Eur J Pharm Sci. 2004;21(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  24. Piletz JE, Drivon J, Eisenga J, Buck W, Yen S, Mclin M, et al. Human cells grown with or without substitutes for fetal bovine serum. Cell Med. 2018;10:1–11.

    Article  Google Scholar 

  25. Gstraunthaler G, Lindl T, Van Der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 2013;65:791–3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell cultures. Nat Protoc. 2010;5(5):929–34 Available from: https://doi.org/10.1038/nprot.2010.43.

    Article  CAS  PubMed  Google Scholar 

  27. Ferruzza S, Rossi C, Scarino ML, Sambuy Y. A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol in Vitro. 2012;26:1247–51.

    Article  CAS  PubMed  Google Scholar 

  28. Casteleyn C, Rekecki A, Van Der Aa A, Simoens P, Van Den Broeck W. Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Lab Anim. 2010;44(3):176–83.

    Article  CAS  PubMed  Google Scholar 

  29. Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2008;25(8):1782–8.

    Article  CAS  PubMed  Google Scholar 

  30. Lamson NG, Cusimano G, Suri K, Zhang A, Whitehead KA. The pH of Piperazine derivative solutions predicts their utility as Transepithelial permeation enhancers. Mol Pharm. 2016;13(2):578–85.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59.

    Article  CAS  PubMed  Google Scholar 

  32. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J lab autom. 2015;20(2):107–26 Available from: https://doi.org/10.1177/2211068214561025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howell S, Kenny AJ, Turner AJ. A survey of membrane peptidases in two human colonic cell lines, Caco-2 and HT-29. Biochem J. 1992;284:595–601 Available from: https://doi.org/10.1042/bj2840595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kam KR, Walsh LA, Bock SM, Koval M, Fischer KE, Ross RF, et al. Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. Nano Lett. 2013;13(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  35. Vllasaliu D, Exposito-Harris R, Heras A, Casettari L, Garnett M, Illum L, et al. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. Int J Pharm. 2010;400(1–2):183–93.

    Article  CAS  PubMed  Google Scholar 

  36. Fein KC, Lamson NG, Whitehead KA. Structure-function analysis of Phenylpiperazine derivatives as intestinal permeation enhancers. Pharm Res. 2017;34(6):1320–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yu Q, Wang Z, Li P, Yang Q. The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm. 2013;39(4):587–92.

    Article  CAS  PubMed  Google Scholar 

  38. Whitehead K, Mitragotri S. Mechanistic analysis of chemical permeation enhancers for oral drug delivery. Pharm Res. 2008;25(6):1412–9.

    Article  CAS  PubMed  Google Scholar 

  39. Brake K, Gumireddy A, Tiwari A, Chauhan H, Kumari D. In vivo studies for drug development via Oral delivery: challenges, animal models and techniques. Pharm Anal Acta. 2017;08(09) Available from: https://doi.org/10.4172/2153-2435.1000560

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn A. Whitehead.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamson, N.G., Ball, R.L., Fein, K.C. et al. Thrifty, Rapid Intestinal Monolayers (TRIM) Using Caco-2 Epithelial Cells for Oral Drug Delivery Experiments. Pharm Res 36, 172 (2019). https://doi.org/10.1007/s11095-019-2712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2712-6

Key Words

Navigation