Skip to main content
Log in

Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Intranasal administration has been extensively applied to deliver drugs to the brain. In spite of its unfavorable biopharmaceutic properties, melatonin (MLT) has demonstrated anticancer effects against glioblastoma. This study describes the nose-to-brain delivery of MLT-loaded polycaprolactone nanoparticles (MLT-NP) for the treatment of glioblastoma.

Methods

MLT-NP were prepared by nanoprecipitation. Following intranasal administration in rats, brain targeting of the formulation was demonstrated by fluorescence tomography. Brain and plasma pharmacokinetic profiles were analyzed. Cytotoxicity against U87MG glioblastoma cells and MRC-5 non-tumor cells was evaluated.

Results

MLT-NP increased the drug apparent water solubility ~35 fold. The formulation demonstrated strong activity against U87MG cells, resulting in IC50 ~2500 fold lower than that of the free drug. No cytotoxic effect was observed against non-tumor cells. Fluorescence tomography images evidenced the direct translocation of nanoparticles from nasal cavity to the brain. Intranasal administration of MLT-NP resulted in higher AUCbrain and drug targeting index compared to the free drug by either intranasal or oral route.

Conclusions

Nanoencapsulation of MLT was crucial for the selective antitumoral activity against U87MG. In vivo evaluation confirmed nose-to-brain delivery of MLT mediated by nanoparticles, highlighting the formulation as a suitable approach to improve glioblastoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBB:

Blood brain barrier

Cou6-NP:

Coumarin6-loaded nanoparticles

DTI:

Drug targeting index

EE%:

Encapsulation efficiency

FMT:

Fluorescence molecular tomography

GBM:

Glioblastoma multiforme

IR780-NP:

IR780-loaded nanoparticles

IS:

Internal standard

MLT:

Melatonin

MLT-NP:

Melatonin-loaded nanoparticles

MLT-susp:

Melatonin suspension

PCL:

Polycaprolactone

Pdi:

Polydispersity index

References

  1. Battaglia L, Panciani PP, Muntoni E, Capucchio MT, Biasibetti E, De Bonis P, et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv. 2018;15(4):369–78.

    Article  CAS  Google Scholar 

  2. Ying X, Wen H, Lu W-L, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–92.

    Article  CAS  Google Scholar 

  3. Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma: Codon Publications; 2017.

  4. Bastiancich C, Danhier P, Préat V, Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release. 2016;243:29–42.

    Article  CAS  Google Scholar 

  5. Gänger S, Schindowski K, Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, Physico-chemical characteristics and Mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3):116.

    Article  Google Scholar 

  6. Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.

    Article  CAS  Google Scholar 

  7. Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan D-X, Sugino N, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92(1):328–43.

    Article  CAS  Google Scholar 

  8. Kleszczyński K, Bilska B, Stegemann A, Flis D, Ziolkowski W, Pyza E, et al. Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. Int J Mol Sci. 2018;19(12):3786.

    Article  Google Scholar 

  9. Menéndez-Menéndez J, Martínez-Campa C. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers. Int J Endocrinol. 2018;2018:1–20.

    Article  Google Scholar 

  10. Pan H, Wang H, Jia Y, Wang Q, Li L, Wu Q, et al. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep. 2017;16(1):908–14.

    Article  CAS  Google Scholar 

  11. Kumar Yadav S, Kumar Srivastava A, Dev A, Kaundal B, Roy Choudhury S, Karmakar S. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line. Nanotechnology. 2017;28(36):365102.

    Article  Google Scholar 

  12. Frey WH, Liu J, Chen X, Thorne RG, Fawcett JR, Ala TA, et al. Delivery of 125- I-NGF to the Brain via the Olfactory Route. Drug Deliv1. 997 Jan 27;4(2):87–92.

  13. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014;189:133–40.

    Article  CAS  Google Scholar 

  14. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  Google Scholar 

  15. Schiöth HB, Craft S, Brooks SJ, Frey WH, Benedict C. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.

    Article  Google Scholar 

  16. Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH, et al. New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro-Oncology. 2008;10(2):112–20.

    Article  CAS  Google Scholar 

  17. Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M, et al. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using box-Behnken design: In Vitro and In Vivo evaluation. Biomed Res Int. 2014:1–14.

    Google Scholar 

  18. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  Google Scholar 

  19. Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, et al. Surface-modified Nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34.

    Article  Google Scholar 

  20. Mistry A, Glud SZ, Kjems J, Randel J, Howard KA, Stolnik S, et al. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target. 2009;17(7):543–52.

    Article  CAS  Google Scholar 

  21. Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of Frovatriptan succinate–loaded polymeric nanoparticles for brain targeting. J Pharm Sci. 2019;108(2):851–9.

    Article  CAS  Google Scholar 

  22. Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, et al. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 2016;499(1–2):81–9.

    Article  CAS  Google Scholar 

  23. Bonaccorso A, Musumeci T, Serapide MF, Pellitteri R, Uchegbu IF, Puglisi G. Nose to brain delivery in rats: effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf B: Biointerfaces. 2017;154:297–306.

    Article  CAS  Google Scholar 

  24. Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, et al. Brain targeting of Temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and Scintigraphic analyses. Mol Pharm. 2016;13(11):3773–82.

    Article  CAS  Google Scholar 

  25. Mistry A, Stolnik S, Illum L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm. 2015;12(8):2755–66.

    Article  CAS  Google Scholar 

  26. Hoffmeister CR, Durli TL, Schaffazick SR, Raffin RP, Bender EA, Beck RC, et al. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery. Nanoscale Res Lett. 2012;7(1):251.

    Article  Google Scholar 

  27. Musumeci T, Serapide MF, Pellitteri R, Dalpiaz A, Ferraro L, Dal Magro R, et al. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm. 2018;133:309–20.

    Article  CAS  Google Scholar 

  28. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9:1521–32.

    Article  CAS  Google Scholar 

  29. Chen X, Hao A, Li X, Du Z, Li H, Wang H, et al. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J Pineal Res. 2016;61(2):208–17.

    Article  Google Scholar 

  30. Martín V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, Antolín I, et al. Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res. 2014;57(3):308–16.

    Article  Google Scholar 

  31. Martín V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108(10):2005–12.

    Article  Google Scholar 

  32. Kinker GS, Oba-Shinjo SM, Carvalho-Sousa CE, Muxel SM, Marie SKN, Markus RP, et al. Melatonergic system-based two-gene index is prognostic in human gliomas. J Pineal Res. 2016;60(1):84–94.

    Article  CAS  Google Scholar 

  33. Franco D, Moretti I, Marie S, Franco DG, Moretti IF, Marie SKN. Mitochondria transcription factor a: a putative target for the effect of melatonin on U87MG malignant glioma cell line. Molecules. 2018;23(5):1129.

    Article  Google Scholar 

  34. Martín V, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sanchez-Sanchez A, Antolín I, et al. Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death. Cancer Lett. 2010;287(2):216–23.

    Article  Google Scholar 

  35. Lanoix D, Lacasse A-A, Reiter RJ, Vaillancourt C. Melatonin: the smart killer: The human trophoblast as a model. Mol Cell Endocrinol. 2012;348(1):1–11.

    Article  Google Scholar 

  36. Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C, et al. Biocompatible polymer nanoparticles for drug delivery applications in Cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019;10(1):4.

    Article  CAS  Google Scholar 

  37. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337–62.

    Article  CAS  Google Scholar 

  38. Li Y, Wang C, Zong S, Qi J, Dong X, Zhao W, et al. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: evidence from aggregation-caused quenching probes. J Biomed Nanotechnol. 2019;15(4):686–702.

    Article  CAS  Google Scholar 

  39. Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L, et al. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ. 2006;332(7538):385–93.

    Article  CAS  Google Scholar 

  40. Li Y, Li S, Zhou Y, Meng X, Zhang J-J, Xu D-P, et al. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017 2019;8(24):39896–39921.

  41. Priprem A, Johns JR, Limsitthichaikoon S, Limphirat W, Mahakunakorn P, Johns NP. Intranasal melatonin nanoniosomes: pharmacokinetic, pharmacodynamics and toxicity studies. Ther Deliv. 2017;8(6):373–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the following Brazilian research funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Financing code 001, Fundação de Apoio à Pesquisa da Universidade Federal de Goiás (FUNAPE) and Fundação de Apoio à Pesquisa do Estado de Goiás (FAPEG). The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Martins Lima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Junior, E.R., Nascimento, T.L., Salomão, M.A. et al. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res 36, 131 (2019). https://doi.org/10.1007/s11095-019-2662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2662-z

Key Words

Navigation