Skip to main content
Log in

Drug-Polymer Interaction, Pharmacokinetics and Antitumor Effect of PEG-PLA/Taxane Derivative TM-2 Micelles for Intravenous Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel polymer micelle was prepared with a high drug loading, good stability, high tolerance and better anti-tumor effect.

Methods

TM-2 was encapsulated in poly-block-poly (D, L-lactic acid) self-assembled micelles by the thin-film hydration method. From the critical micelle concentrations of the copolymers, particle size, drug loading and encapsulation efficiency of drug-loading micelles, the appropriate polymer material could be assessed. Comparisons between TM-2 solution and TM-2 micelles were done to evaluate the pharmacokinetics and toxicity in rats, compared with Taxol to evaluate the anti-tumor effect in mice.

Results

The optimized TM-2 micelles achieved a high drug loading (~20%) with the polymer material of PEG2k-PLA2.5k, with a particle size of 30 nm and no significant change in particle size after lyophilization. The result of pharmacokinetic experiment displayed that the half-life in vivo was obviously prolonged. The maximum tolerated dose of TM-2 micelles was approximately 25 mg/kg in rats, and the relative tumor growth rate of Taxol (15 mg/kg), TM-2 (10 mg/kg), TM-2 (15 mg/kg) and TM-2 (40 mg/kg) in mice were 49.35%, 49.14%, 36.44 and 9.98% respectively.

Conclusions

TM-2 micelles with high drug loading increased drug solubility, improved tolerance, antitumor effects and reduced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A549:

Human lung xenografts

ACN:

Acetonitrile

AUC:

Concentration-time curve

BC:

Breast cancer

Clz :

Plasma clearance

Cmax :

Maximum plasma concentration

CMC:

Critical micelle concentration

CrEL:

Cremophor EL

CYP:

Cytochrome P450 proteins

DL:

Drug loading

DLS:

Dynamic light scattering

DMF:

N-N dimethylformamide

DSC:

Differential scanning calorimetry

EE:

Encapsulation efficiency

FTIR:

Fourier Transform infrared spectroscopy

GPC:

Gel permeation chromatography

KB/VCR:

Human cervical adenocarcinoma resistant to vincristine

MBC:

Metastatic breast cancer

MCF:

7/ADR-Human breast cancer resistant to adriamycin

MDR:

Multiple drug resistance

MTD:

The maximum tolerable dose

NSCLC:

Non-small cell lung cancer

OC:

Ovarian cancer

ODnc:

Negative control absorbance

ODpc:

Positive control absorbance

ODt:

Sample absorbance

PBS:

Phosphate-buffered saline

PDI:

Polydispersity index

PEG:

PLA-Poly-block-poly (D, L-lactic acid)

PSD:

Particle size distribution

PSMA:

Prostate-specific membrane antigen

PTX:

Paclitaxel

RTV:

Relative tumor volume

SD:

Male Sprague-Dawley

T/C:

Relative tumor growth rate

t1/2 :

Elimination half-life

Taxol:

Commercial name of paclitaxel solution

TEM:

Transmission electron microscopy

Tmax :

Maximum plasma concentration

Tween:

Polysorbate

XRD:

X-ray diffraction

References

  1. Shi J, Chen X, Gu Y, et al. Preformulation and development of chemically stable lipid emulsions containing a novel taxane derivative, TM-2. Eur J Lipid Sci Technol. 2014;116(4):486–96.

    Article  CAS  Google Scholar 

  2. Lin H, Zhao Y, Men L, Yang M, Liu H, Shao Y, et al. Development of a rapid and sensitive UPLC-MS/MS assay for the determination of TM-2 in beagle dog plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2015;29(1):110–4.

    Article  CAS  Google Scholar 

  3. Men L, Lin H, Zhao Y, Liu H, Yang M, Fan R, et al. Metabolism of TM-2, a potential antitumor drug, in rats by using LC-MS. J Sep Sci. 2014;37(6):625–9.

    Article  CAS  Google Scholar 

  4. Hennenfent KL, Govindan R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol. 2006;17(5):735–49.

    Article  CAS  Google Scholar 

  5. Reddy LH, Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev. 2014;71:34–57.

    Article  CAS  Google Scholar 

  6. Sofias AM, Dunne M, Storm G, Allen C. The battle of "nano" paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30.

    Article  CAS  Google Scholar 

  7. Tae-You Kim D-WK, et al. Phase I and Pharmacopoeia Study of Gene-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies. Clin Cancer Res. 2004;10:3708–16.

    Article  Google Scholar 

  8. Ibrahim ND NK, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, Nanoparticle Formulationof Paclitaxel. Clin Cancer Res. 2002;8:1038–44.

    Google Scholar 

  9. Yamada K, Yamamoto N, Yamada Y, Mukohara T, Minami H, Tamura T. Phase I and pharmacokinetic study of ABI-007, albumin-bound paclitaxel, administered every 3 weeks in Japanese patients with solid tumors. Jpn J Clin Oncol. 2010;40(5):404–11.

    Article  Google Scholar 

  10. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  Google Scholar 

  11. Jeffrey Hrkach DVH, Ali MM, Andrianova E, Auer J. Preclinical development and clinical translation of aPSMA-targeted docetaxel nanoparticle with a differentiated pharmacologicalprofile. Nanomedicine. 2012;4:128.

    Google Scholar 

  12. Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, et al. Phase I Study of PSMA-targeted Docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 2016;22(13):3157–63.

    Article  Google Scholar 

  13. Shalgunov V, Zaytseva-Zotova D, Zintchenko A, Levada T, Shilov Y, Andreyev D, et al. Safarovsmall a CE. Comprehensive study of the drug delivery properties of poly(l-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. J Control Release. 2017;261:31–42.

    Article  CAS  Google Scholar 

  14. He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, et al. A high capacity polymeric micelle of paclitaxel: implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309.

    Article  CAS  Google Scholar 

  15. Li Y, He H, Wang Q, Tang X. Preparation, stability and pharmacokinetics evaluation of lipid microspheres loading a promising antitumor candidate, Timataxel. Asian J Pharm Sci. 2016;11(6):771–9.

    Article  Google Scholar 

  16. Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol. 2011;18(3):15–28.

    Article  CAS  Google Scholar 

  17. Zeng R.Lin H.Leng Y.Xu J.Ma J. Studies on hemolysis properties of medical α-calcium sulfate hemihydrate. Journal of Hainan Medical University 2017:16–18.

  18. Mei T, Zhu Y, Ma T, He T, Li L, Wei C, et al. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. J Biomed Mater Res A. 2014;102(9):3243–54.

    Article  Google Scholar 

  19. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9–10):1521–32.

    Article  CAS  Google Scholar 

  20. Burt H M, Zhang X,Toleikis P,Embree L,Hunter W. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloid Ssurface B. 1999:161–171.

    Article  CAS  Google Scholar 

  21. Li X, Yang Z, Yang K, Zhou Y, Chen X, Zhang Y, et al. Self-assembled polymeric Micellar nanoparticles as Nanocarriers for poorly soluble anticancer drug Ethaselen. Nanoscale Res Lett. 2009;4(12):1502–11.

    Article  CAS  Google Scholar 

  22. Riley T, Heald CR, Stolnik S, Garnett MC, Illum L, Davis SS. Core-shell structure of PLA-PEG nanoparticles used for drug delivery. J Am Chem Soc. 2003;19(20):8428–35.

    CAS  Google Scholar 

  23. Stolnik S, Heald CR, Neal J, Garnett MC, Davis SS, Illum L, et al. Polylactide-poly(ethylene glycol) Micellar-like particles as potential drug carriers: production, colloidal properties and biological performance. J Drug Target. 2010;9(5):361–78.

    Article  Google Scholar 

  24. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.

    Article  CAS  Google Scholar 

  25. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 2010;141(3):320–7.

    Article  CAS  Google Scholar 

  26. Sung Chul Kim DWK, Shim YH, Bang JS, Hun Seung O, Kim SW, Seo MH. In vivo evaluation of polymeric micellar paclitaxel formulation_ toxicity and efficacy. J Control Release. 2001;72(1–3):191–202.

    Google Scholar 

  27. Dong Y, Feng SS. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials. 2007;28(28):4154–60.

    Article  CAS  Google Scholar 

  28. Bazile D, Homme C P, Bassoulet M T, Marlard M, Spenlehauer G, Veillard M. Stealth Me_PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84(4):493–8.

    Article  CAS  Google Scholar 

  29. Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med. 2009;20(9):1881–91.

    Article  CAS  Google Scholar 

  30. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med. 2014;6(229):229ra243.

    Article  Google Scholar 

  31. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  Google Scholar 

  32. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  Google Scholar 

  33. Ma P, Mumper RJ. Paclitaxel Nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164.

    Article  Google Scholar 

  34. Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, et al. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials. 2011;32(22):5148–57.

    Article  CAS  Google Scholar 

  35. Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: an industrial viewpoint. Adv Drug Deliv Rev. 2016;107:289–332.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Y., Pu, C. et al. Drug-Polymer Interaction, Pharmacokinetics and Antitumor Effect of PEG-PLA/Taxane Derivative TM-2 Micelles for Intravenous Drug Delivery. Pharm Res 35, 208 (2018). https://doi.org/10.1007/s11095-018-2477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2477-3

Key Words

Navigation