Skip to main content

Advertisement

Log in

Influence of Fatty Acid Modification on Uptake of Lovastatin-Loaded Reconstituted High Density Lipoprotein by Foam Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Spherical reconstituted high density lipoprotein (rHDL) can target atherosclerotic lesions by the very low density lipoprotein (VLDL) receptor, which is seldom expressed in liver. By promoting this pathway, the targeting efficiency was hyphothesized to be improved due to avoiding undesired uptake in liver mediated by the scavenger receptor class B type I (SR-BI). In this study, how fatty acid modification in spherical rHDL influenced the VLDL receptor-mediated endocytosis pathway was investigated.

Methods

Stearic acid (SA) and arachidonic acid (AA) with different saturation levels were utilized to modify the lovastatin-loaded rHDL (LS-rHDL). Phagocytosis test on foam cells with or without cholesteryl ester transfer protein (CETP) expression was conducted to observe the cellular uptake of the SA or AA modified rHDL and the non-modified one. Raman spectroscopy, guanidine hydrochloride (Gdn-HCl) denaturation experiment and in vitro evaluation of drug release were used to analyze the related mechanism.

Results

In comparison with the non-modified rHDL, AA modification could reduce the packing order of the rHDL phospholipid acyl chains, leading to the decreased apoA-I binding extent with lipid and the increased drug release, while the opposite was true for SA modification. The AA-modified rHDL exhibited a higher uptake of foam cells expressing CETP than the non-modified one, while the SA-modified one showed the lowest cellular uptake among the three rHDLs.

Conclusions

Increased unsaturation level can facilitate lipid-interchange process where the cargo in rHDL core may transfer to VLDL more easily, and then promote the endocytosis mediated by the VLDL receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

apoA-I:

Apolipoprotein A-I

CE:

Cholesterol ester

CETP:

Cholesteryl ester transfer protein

DL:

Drug loading capacity

DLS:

Dynamic light scattering

EE:

Entrapment efficiency

Gdn-HCl:

Guanidine hydrochloride

HDL:

High density lipoprotein

LS:

Lovastatin

LS-AA-NLC:

AA modified LS-NLC

LS-AA-rHDL:

AA modified LS-rHDL

LS-SA-NLC:

SA modified LS-NLC

LS-SA-rHDL:

SA modified LS-rHDL

LS-NLC:

LS-loaded nanostructured lipid carrier

LS-rHDL:

LS-loaded reconstituted high density lipoprotein

R-rHDL:

Rhodamine-loaded rHDL

rHDL:

Reconstituted high density lipoprotein

SA:

Stearic acid

SR-BI:

Scavenger receptor class B type I

TA:

Tanshinone IIA

TEM:

Transmission electron microscopy

TG:

Triglyceride

VLDL:

Very low density lipoprotein

WMF:

Wavelength of maximum fluorescence

References

  1. Damiano MG, Mutharasan RK, Tripathy S, Mcmahon KM, Thaxton CS. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliver Rev. 2013;65(5):649–62.

    Article  CAS  Google Scholar 

  2. Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radical Bio Med. 2006;41(7):1031–40.

    Article  CAS  Google Scholar 

  3. Rui M, Tang H, Li Y, Wei X, Xu Y. Recombinant high density lipoprotein nanoparticles for target-specific delivery of siRNA. Pharm Res. 2013;30(5):1203–14.

    Article  PubMed  CAS  Google Scholar 

  4. Rui M, Guo W, Ding Q, Wei X, Xu J, Xu Y. Recombinant high-density lipoprotein nanoparticles containing gadolinium-labeled cholesterol for morphologic and functional magnetic resonance imaging of the liver. Int J Nanomedicine. 2012;7:3751–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Crich SG, Alberti D, Orio L, Stefania R, Longo D, Aime S. Lipid-based nanoparticles in cardiovascular molecular imaging. Curr Cardiovasc Imaging Rep. 2013;6(1):69–75.

    Article  Google Scholar 

  6. Chen W, Jarzyna PA, van Tilborg GA, Nguyen VA, Cormode DP, Klink A, et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J. 2010;24(6):1689–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen W, Vucic E, Leupold E, Mulder WJ, Cormode DP, Briley-Saebo KC, et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol I. 2008;3(6):233–42.

    Article  CAS  Google Scholar 

  8. Shin JY, Yang Y, Heo P, Lee JC, Kong BJ, Cho JY, et al. pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. Int J Nanomedicine. 2012;7(6):2805–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang W, He H, Liu J, Wang J, Zhang S, Zhang S, et al. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins. Biomaterials. 2013;34(1):306–19.

    Article  PubMed  CAS  Google Scholar 

  10. Sabnis N, Lacko AG. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv. 2012;3(5):599–608.

    Article  PubMed  CAS  Google Scholar 

  11. Lee J, Park Y, Koo SI. ATP binding cassette transporter A-I and HDL metabolism: effects of fatty acids. J Nutr Biochem. 2012;23(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Simonsen JB. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform – a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. Nanomed Nanotechnol Biol Med. 2016;12(7):2161–79.

    Article  CAS  Google Scholar 

  13. Shah S, Chib R, Raut S, Bermudez J, Sabnis N, Duggal D, et al. Photophysical characterization of anticancer drug valrubicin in rHDL nanoparticles and its use as an imaging agent. J Photoch Photobio B. 2016;155(5):60–5.

    Article  CAS  Google Scholar 

  14. Feng M, Cai Q, Huang H, Zhou P. Liver targeting and anti-HBV activity of reconstituted HDL–acyclovir palmitate complex. Eur J Pharm Bioharm. 2008;68(3):688–93.

    Article  CAS  Google Scholar 

  15. Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdogarcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5(2):3065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, et al. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb. 2004;11(4):200–8.

    Article  PubMed  CAS  Google Scholar 

  17. Kosaka S, Takahashi S, Masamura K, Kanehara H, Sakai J, Tohda G, et al. Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-γ inhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages. Circulation. 2001;103(8):1142–7.

    Article  PubMed  CAS  Google Scholar 

  18. Multhaupt HA, Gåfvels ME, Kariko K, Jin H, Arenas-Elliot C, Goldman BI, et al. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry. Am J Pathol. 1996;148(6):1985–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Goudriaan JR, Espirito Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJ, et al. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J Lipid Res. 2004;45(8):1475–81.

    Article  PubMed  CAS  Google Scholar 

  20. Hiltunen TP, Luoma JS, Nikkari T, Yla-Herttuala S. Expression of LDL receptor, VLDL receptor, LDL receptor related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation. 1998;97(11):1079–86.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang WL, Xiao Y, Liu JP. Wu ZM, Gu X, Xu YM, et al. structure and remodeling behavior of drug-loaded high density lipoproteins and their atherosclerotic plaque targeting mechanism in foam cell model. Int J Pharm. 2011;419(1–2):314–21.

    Article  PubMed  CAS  Google Scholar 

  22. Rye KA, Duong M, Psaltis MK, Curtiss LK, Bonnet DJ, Stocker R, et al. Evidence that phospholipids play a key role in pre-β ApoA-I formation and high-density lipoprotein remodeling. Biochemistry. 2002;41(41):12538–45.

    Article  PubMed  CAS  Google Scholar 

  23. Leekumjorn S, Cho HJ, Wu Y, Wright NT, Sum AK, Chan C. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim Biophys Acta. 2009;1788(7):1508–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rogerson ML, Robinson BH, Bucak S, Walde P. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloid Surface B. 2006;48(1):24–34.

    Article  CAS  Google Scholar 

  25. Maron DJ, Fazio S, Linton MRF. Current perspective on statins. Circulation. 2000;101(2):207–13.

    Article  PubMed  CAS  Google Scholar 

  26. Kistler P, Nitschmann H. Large scale production of human plasma fractions. Eight years experience with the alcohol fractionation procedure of Nitschmann, Kistler and Lergier Vox Sang. 1962;7(4):414.

    PubMed  CAS  Google Scholar 

  27. Wang L, Chen WM. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index. Cytokine. 2010;49(2):194–200.

    Article  PubMed  CAS  Google Scholar 

  28. Schumaker VN, Puppione DL. Sequential flotation ultracentrifugation. Method Enzymol. 1986;128:155–70.

    Article  CAS  Google Scholar 

  29. Lehrer SS. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971;10(17):3254–63.

    Article  PubMed  CAS  Google Scholar 

  30. Jonas A, Wald JH, Toohill KL, Krul ES, Kézdy KE, Apolipoprotein A-I. Structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. J Biol Chem. 1990;265(36):22123–9.

    PubMed  CAS  Google Scholar 

  31. Jain SK, Chaurasiya A, Gupta Y, Jain A, Dagur P, Joshi B, et al. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul. 2008;25(5):289–97.

    Article  PubMed  CAS  Google Scholar 

  32. Ianoul A, Westwick H, Nowacka L, Quan B. Interactions of lactoferricin B derivatives with model cell membrane studied by Raman spectroscopy. J Raman Spectrosc. 2010;38(2):200–4.

    Article  CAS  Google Scholar 

  33. Gu X, Zhang W, Liu J, Shaw JP, Shen Y, Xu Y, et al. Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech. 2011;12(4):1200–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ogino C, Shibata N, Sasai R, Takaki K, Miyachi Y, Kuroda S, et al. Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method. Bioorg Med Chem Lett. 2010;20(17):5320–5.

    Article  PubMed  CAS  Google Scholar 

  35. Jia J, Xiao Y, Liu J, Zhang W, He H, Chen L, et al. Preparation, characterizations, and in vitro metabolic processes of paclitaxel-loaded discoidal recombinant high-density lipoproteins. J Pharm Sci. 2012;101(8):2900–8.

    Article  PubMed  CAS  Google Scholar 

  36. Gardikis K, Hatziantoniou S, Viras K, Demetzos C. Effect of a bioactive curcumin derivative on DPPC membrane: a DSC and Raman spectroscopy study. Thermochim Acta. 2006;447(1):1–4.

    Article  CAS  Google Scholar 

  37. Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos CADSC. Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm. 2006;318(1–2):118–23.

    Article  PubMed  CAS  Google Scholar 

  38. Cieślik-Boczula K, Czarnik-Matusewicz B, Perevozkina M, Filarowski A, Boens N, Borggraeve WMD, et al. ATR-IR spectroscopic study of the structural changes in the hydrophobic region of ICPAN/DPPC bilayers. J Mol Struct. 2008;878(1–3):162–8.

    Article  CAS  Google Scholar 

  39. Charrois GJ, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta. 2004;1663(1–2):167–77.

    Article  PubMed  CAS  Google Scholar 

  40. Inoue T, Yanagihara SI, Misono Y, Suzuki M. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids. Chem Phys Lipids. 2001;109(2):117–33.

    Article  PubMed  CAS  Google Scholar 

  41. Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem. 2003;278(25):22530–6.

    Article  PubMed  CAS  Google Scholar 

  42. Mehta SB, Carpenter JF, Randolph TW. Colloidal instability fosters agglomeration of subvisible particles created by rupture of gels of a monoclonal antibody formed at silicone oil-water interfaces. J Pharm Sci. 2016;105(8):2338–48.

    Article  PubMed  CAS  Google Scholar 

  43. Xie S, Lee YF, Kim E, Chen LM, Ni J, Fang LY, et al. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc Natl Acad Sci U S A. 2009;106(32):13353–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meyer JM, Ji A, Cai L, Dr VDW. High-capacity selective uptake of cholesteryl ester from native LDL during macrophage foam cell formation. J Lipid Res. 2012;53(10):2081–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Riera C, Verges M, Iniesta L, Fisa R, Gállego M, Tebar S, et al. Identification of a western blot pattern for the specific diagnosis of Trypanosoma cruzi infection in human sera. Am J Trop Med Hyg. 2012;86(3):412–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rittershaus CW, Miller DP, Thomas LJ, Picard MD, Honan CM, Emmett CD, et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscl Throm Vas. 2000;20(9):2106–12.

    Article  CAS  Google Scholar 

  47. Tall AR. Functions of cholesterol ester transfer protein and relationship to coronary artery disease risk. J Clin Lipidol. 2010;4(5):389–93.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med. 2006;84(4):276–94.

    Article  PubMed  CAS  Google Scholar 

  49. GJ dG, AH K, ES S, AF S, JJ K, JA K. A review of CETP and its relation to atherosclerosis. J Lipid Res. 2004;45(11):1967–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenli Zhang or Jianping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, J., He, H. et al. Influence of Fatty Acid Modification on Uptake of Lovastatin-Loaded Reconstituted High Density Lipoprotein by Foam Cells. Pharm Res 35, 134 (2018). https://doi.org/10.1007/s11095-018-2419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2419-0

KEY WORDS

Navigation