Skip to main content

Advertisement

Log in

Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work explores synthesis of novel cholesterol derivative for the preparation of cationic liposomes and its interaction with Paclitaxel (PTX) within liposome membrane using molecular dynamic (MD) simulation and in-vitro studies.

Methods

Cholesteryl Arginine Ethylester (CAE) was synthesized and characterized. Cationic liposomes were prepared using Soy PC (SPC) at a molar ratio of 77.5:15:7.5 of SPC/CAE/PTX. Conventional liposomes were composed of SPC/cholesterol/PTX (92:5:3 M ratio). The interaction between paclitaxel, ligand and the membrane was studied using 10 ns MD simulation. The interactions were studied using Differential Scanning Calorimetry (DSC) and Small Angle Neutron Scattering analysis. The efficacy of liposomes was evaluated by MTT assay and endothelial cell migration assay on different cell lines. The safety of the ligand was determined using the Comet Assay.

Results

The cationic liposomes improved loading efficiency and stability compared to conventional liposomes. The increased PTX loading could be attributed to the hydrogen bond between CAE and PTX and deeper penetration of PTX in the bilayer. The DSC study suggested that inclusion of CAE in the DPPC bilayer eliminates Tg. SANS data showed that CAE has more pronounced membrane thickening effect as compared to cholesterol. The cationic liposomes showed slightly improved cytotoxicity in three different cell lines and improved endothelial cell migration inhibition compared to conventional liposomes. Furthermore, the COMET assay showed that CAE alone does not show any genotoxicity.

Conclusions

The novel cationic ligand (CAE) retains paclitaxel within the phospholipid bilayer and helps in improved drug loading and physical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1HNMR:

Proton nuclear magnetic resonance

CAE:

Cholesteryl arginine ethylester

DMEM:

Dulbecco’s modified eagle’s medium

DPX:

Disterene plasticizer xylene

H5V:

Mouse endothelial cell line

HDMEC:

Human dermal microvascular endothelial cells

IC50:

Concentration at which 50% inhibition seen

IntraHB:

Intramolecular hydrogen bonds

LMP:

Low melting point

MD Simulation:

Molecular dynamic simulation

MDA-MB 231:

Human breast cancer adenocarcinoma cell line

MolSA:

Molecular surface area

MTT:

3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide

OD:

Optical density

OPLS3:

Optimized potentials for liquid simulations

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

PSA:

Polar surface area

PTX:

Paclitaxel

RMSD:

Relative mean square deviation

SASA:

Solvent accessible surface area

SPC:

Soy phosphatidylcholine

TIP3P:

Transferable intermolecular potential with 3 points

TLC:

Thin layer chromatography

References

  1. Surapaneni MS, Das SK, Das NG. Designing paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN pharmacology. 2012;2012:1–15.

    Article  Google Scholar 

  2. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1–2):179–92.

    Article  CAS  PubMed  Google Scholar 

  3. Gelderblom H, Verweij J, Nooter K, Sparreboom A, Cremophor EL. The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.

    Article  CAS  PubMed  Google Scholar 

  4. US Food and Drug Administration. Drugs@ FDA: FDA approved drug products. 2017. Available from: https://www.accessdata.fda.gov/scripts/cder/daf.html.

  5. Rizvi NA, Riely GJ, Azzoli CG, Miller VA, Ng KK, Fiore J, et al. Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non–small-cell lung cancer. J Clin Oncol. 2008;26(4):639–43.

    Article  CAS  PubMed  Google Scholar 

  6. Ruttala HB, Ko YT. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm Res. 2015;32(3):1002–16.

    Article  CAS  PubMed  Google Scholar 

  7. Bernabeu E, Helguera G, Legaspi MJ, Gonzalez L, Hocht C, Taira C, et al. Paclitaxel-loaded PCL–TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane®. Colloids Surf B: Biointerfaces. 2014;113:43–50.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshizawa Y, Kono Y, K-i O, Kimura T, Higaki K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm. 2011;412(1–2):132–41.

    Article  CAS  PubMed  Google Scholar 

  9. Koudelka Š, Liposomal TJ. Paclitaxel formulations. J Control Release. 2012;163(3):322–34.

    Article  CAS  PubMed  Google Scholar 

  10. Slingerland M, Guchelaar HJ, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH, et al. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther. 2013;35(12):1946–54.

    Article  CAS  PubMed  Google Scholar 

  11. clinicaltrials.gov. A trial evaluating the efficacy and safety of EndoTAG®-1 in combination with paclitaxel and gemcitabine compared with paclitaxel and gemcitabine as first-line therapy in patients with visceral metastatic triple-negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT03002103, 2016.

  12. Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, et al. Charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 2002;62(23):6831–6.

    CAS  PubMed  Google Scholar 

  13. Lila ASA, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res. 2010;27(7):1171–83.

    Article  PubMed  Google Scholar 

  14. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, et al. Liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest. 1998;101(7):1401–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, et al. Targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res. 2003;9(6):2335–41.

    CAS  PubMed  Google Scholar 

  16. Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis. 2013;16(3):481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    Article  CAS  PubMed  Google Scholar 

  18. Sofias AM, Dunne M, Storm G, Allen C. The battle of “Nano” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30.

    Article  CAS  PubMed  Google Scholar 

  19. Huynh L, Grant J, Leroux J-C, Delmas P, Allen C. Predicting the solubility of the anti-cancer agent docetaxel in small molecule excipients using computational methods. Pharm Res. 2008;25(1):147–57.

    Article  CAS  PubMed  Google Scholar 

  20. Xiang T-X, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev. 2006;58(12–13):1357–78.

    Article  CAS  PubMed  Google Scholar 

  21. Stepniewski M, Pasenkiewicz-Gierula M, Róg T, Danne R, Orlowski A, Karttunen M, et al. Study of PEGylated lipid layers as a model for PEGylated liposome surfaces: molecular dynamics simulation and Langmuir monolayer studies. Langmuir. 2011;27(12):7788–98.

    Article  CAS  PubMed  Google Scholar 

  22. Kang M, Loverde SM. Molecular simulation of the concentration-dependent interaction of hydrophobic drugs with model cellular membranes. J Phys Chem B. 2014;118(41):11965–72.

    Article  CAS  PubMed  Google Scholar 

  23. Jämbeck JP, Eriksson ES, Laaksonen A, Lyubartsev AP, Eriksson LA. Molecular dynamics studies of liposomes as carriers for photosensitizing drugs: development, validation, and simulations with a coarse-grained model. J Chem Theory Comput. 2013;10(1):5–13.

    Article  Google Scholar 

  24. Hristova K, Wimley WC. A look at arginine in membranes. J Membr Biol. 2011;239(1–2):49–56.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z. Schotten-Baumann Reaction. In: Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons, Inc.; 2010. p. 2536–2539.

  26. Gao X, Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun. 1991;179(1):280–5.

    Article  CAS  PubMed  Google Scholar 

  27. Garlanda C, Parravicini C, Sironi M, De Rossi M, De Calmanovici RW, Carozzi F, et al. Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci. 1994;91(15):7291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, et al. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  29. Chen D-B, T-z Y, Lu W-L, ZHANG Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 2001;49(11):1444–7.

    Article  CAS  PubMed  Google Scholar 

  30. Aswal V, Small-angle GP. Neutron scattering diffractometer at Dhruva reactor. Curr Sci. 2000;79(7):947–53.

    Google Scholar 

  31. Hayter J, Penfold J. Determination of micelle structure and charge by neutron small-angle scattering. Colloid Polym Sci. 1983;261(12):1022–30.

    Article  CAS  Google Scholar 

  32. Kaler E. Small-angle scattering from colloidal dispersions. J Appl Crystallogr. 1988;21(6):729–36.

    Article  CAS  Google Scholar 

  33. Chen S-H, Lin T-L. 16. Colloidal solutions. In: Price DL, Sköld K, editors. Methods in experimental physics: Elsevier; 1987. p. 489–543.

  34. Pedersen JS. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interf Sci. 1997;70:171–210.

    Article  CAS  Google Scholar 

  35. Pedersen JS, Riekel C. Resolution function and flux at the sample for small-angle X-ray scattering calculated in position–angle–wavelength space. J Appl Crystallogr. 1991;24(5):893–909.

    Article  Google Scholar 

  36. Bevington PR, Robinson DK, Blair JM, Mallinckrodt AJ, McKay S. Data reduction and error analysis for the physical sciences. Comput Phys. 1993;7(4):415–6.

    Article  Google Scholar 

  37. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. Cell migration and invasion assays. Methods. 2005;37(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  38. Lovelock J, Bishop M. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959;183(4672):1394–5.

    Article  CAS  PubMed  Google Scholar 

  39. Instruments P. http://www.perceptive.co.uk/products/comet-assay-iv/.

  40. Li Y-C, Rissanen S, Stepniewski M, Cramariuc O, Róg T, Mirza S, et al. Study of interaction between PEG carrier and three relevant drug molecules: piroxicam, paclitaxel, and hematoporphyrin. J Phys Chem B. 2012;116(24):7334–41.

    Article  CAS  PubMed  Google Scholar 

  41. Vander Velde DG, Georg GI, Grunewald GL, Gunn CW, Mitscher LA. " hydrophobic collapse" of taxol and Taxotere solution conformations in mixtures of water and organic solvent. J Am Chem Soc. 1993;115(24):11650–1.

    Article  CAS  Google Scholar 

  42. Stanton DT, Mattioni BE, Knittel JJ, Jurs PC. Development and use of hydrophobic surface area (hsa) descriptors for computer-assisted quantitative structure− activity and structure− property relationship studies. J Chem Inf Comput Sci. 2004;44(3):1010–23.

    Article  CAS  PubMed  Google Scholar 

  43. Balasubramanian SV, Straubinger RM. Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry. 1994;33(30):8941–7.

    Article  CAS  PubMed  Google Scholar 

  44. Belsito S, Bartucci R, Sportelli L. Paclitaxel interaction with phospholipid bilayers: high-sensitivity differential scanning calorimetric study. Thermochim Acta. 2005;427(1–2):175–80.

    Article  CAS  Google Scholar 

  45. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90(6):667–80.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao L, Feng S-S. Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air–water interface. J Colloid Interface Sci. 2006;300(1):314–26.

    Article  CAS  PubMed  Google Scholar 

  47. Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. Journal of liposome research. 2008;18(3):159–73.

    Article  CAS  PubMed  Google Scholar 

  48. Ladbrooke B, Chapman D. Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chem Phys Lipids. 1969;3(4):304–56.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor KM, Morris RM. Thermal analysis of phase transition behaviour in liposomes. Thermochim Acta. 1995;248:289–301.

    Article  CAS  Google Scholar 

  50. Bernsdorff C, Reszka R, Winter R. Interaction of the anticancer agent Taxol™(paclitaxel) with phospholipid bilayers. J Biomed Mater Res. 1999;46(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao L, Feng S-S, Kocherginsky N, Kostetski I. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. Int J Pharm. 2007;338(1–2):258–66.

    Article  CAS  PubMed  Google Scholar 

  52. McMullen TP, McElhaney RN. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1995;1234(1):90–8.

    Article  Google Scholar 

  53. Zhao L, Feng S-S. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. J Colloid Interface Sci. 2004;274(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  54. Ladbrooke B, Williams RM, Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1968;150(3):333–40.

    Article  CAS  Google Scholar 

  55. Estep T, Mountcastle D, Biltonen R, Thompson T. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978;17(10):1984–9.

    Article  CAS  PubMed  Google Scholar 

  56. Yue B, Huang C-Y, Nieh M-P, Glinka CJ, Katsaras J. Highly stable phospholipid unilamellar vesicles from spontaneous vesiculation: a DLS and SANS study. J Phys Chem B. 2005;109(1):609–16.

    Article  CAS  PubMed  Google Scholar 

  57. Braganza LF, Worcester DL. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986;25(9):2591–6.

    Article  CAS  PubMed  Google Scholar 

  58. Levine Y, Wilkins M. Structure of oriented lipid bilayers. Nature New Biology. 1971;230(11):69–72.

    Article  CAS  PubMed  Google Scholar 

  59. McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1978;513(1):43–58.

    Article  CAS  Google Scholar 

  60. Squibb B-M. Taxol®(paclitaxel) injection package insert. 2000. In: 2008. US Food and Drug Administration. Drugs@ FDA: FDA approved drug products. 2017. Available from: ​https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020262.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep R. Vavia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monpara, J., Kanthou, C., Tozer, G.M. et al. Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharm Res 35, 90 (2018). https://doi.org/10.1007/s11095-018-2367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2367-8

KEY WORDS

Navigation