Skip to main content

Advertisement

Log in

Folate Conjugated Hybrid Nanocarrier for Targeted Letrozole Delivery in Breast Cancer Treatment

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Letrozole as a steroidal anticancer drug with hydrophobic nature is usually administrated by oral route for patient treatment and the injectable formulation for this drug has not still been reported. In this study, a new letrozole incorporated folate-conjugated polymer – lipid hybrid nanoparticles – is introduced for cancer treatment.

Methods

Nanoparticles were fabricated via modified oil in water ionic gelation method using optimization parameters and then were coupled to folic acid using carbodiimide activation. The physicochemical characterization in vitro drug release, cytotoxicity, and then ex vivo study of obtained carrier was investigated.

Results

Both thermal and crystallography studies proved the amorphous loading of drug in the nanocarrier. The cytotoxicity investigation with an average IC50 value of 79 ± 2.40 nM proved the efficiency of the coupled folic acid carrier for the intracellular uptake of letrozole on the breast cancer line. Ex vivo, the study proved the positive effect of the letrozole entrapment on the drug bioavailability.

Conclusions

The obtained targeted nanocarrier could overcome the limitations associated with the LTZ as a potent non-steroidal drug. Both the entrapment and therapeutic efficiency of letrozole in the amphiphilic carrier were increased using the lipid nanoparticles and the surface modification, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CS :

Chitosan

DCM :

Dichloromethane

DSC :

Differential scanning calorimetric

DL :

Drug loading

EDC :

1-Ethyl-3-(3-dimethylaminopropyl

EE :

Entrapment efficiency

FA:

Folic acid

FA-PLNs:

FA coupled PLNs

FT-IR :

Fourier transform infrared spectroscopy

IC 50 :

Half-maximal inhibitory concentration

K :

Dissolution rate constant

LTZ :

Letrozole

MTT :

3-(4,5-dimethyl- thiazol-2yl)-2,5-diphenyltetrazoliumbromide

NDDSs:

Nano drug delivery systems

NHS :

N-Hydroxysuccinimide

NPs :

Nanoparticles

Papp :

Apparent permeability coefficients

PBS :

Phosphate buffered saline

PCS :

Photon correlation spectroscopy

PDI :

Polydispersity index

PLNs:

Polymer – lipid hybrid nanocarriers

R 2 :

Correlation coefficient

SA :

Stearic acid

SEM :

Scanning electron microscopy

SPSS :

Statistical package for the social sciences software

TPG :

Tripalmitin glyceride

TPP :

Pentasodium tripolyphosphate

References

  1. Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol. 2013;20(1):26.

    Article  CAS  Google Scholar 

  2. Motiei M, Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci. 2017;99:285–91.

    Article  CAS  Google Scholar 

  3. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.

    Article  CAS  Google Scholar 

  4. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    Article  CAS  Google Scholar 

  5. Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release. 2012;162(1):45–55.

    Article  CAS  Google Scholar 

  6. Bian C, Zhao Y, Guo Q, Xiong Y, Cai W, Zhang J. Aromatase inhibitor letrozole downregulates steroid receptor coactivator-1 in specific brain regions that primarily related to memory, neuroendocrine and integration. J Steroid Biochem Mol Biol. 2014;141(0):37–43.

    Article  CAS  Google Scholar 

  7. Siddiqa AJ, Chaudhury K, Adhikari B. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer. Colloids Sur B. 2014;116:169–75.

    Article  CAS  Google Scholar 

  8. Kazemi S, Sarabi AA, Abdouss M. Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. Korean J Chem Eng. 2016;33(11):3289–97.

    Article  CAS  Google Scholar 

  9. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    Article  Google Scholar 

  10. Lee W-H, Loo C-Y, Leong C-R, Young PM, Traini D, Rohanizadeh R. The achievement of ligand-functionalized organic/polymeric nanoparticles for treating multidrug resistant cancer. Expert Opin Drug Deliv. 2017;14:937–57.

    Article  Google Scholar 

  11. Shargh VH, Hondermarck H, Liang M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine. 2016;11(1):63–79.

    Article  CAS  Google Scholar 

  12. Kovach AK, Gambino JM, Nguyen V, Nelson Z, Szasz T, Liao J, et al. Prospective preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a targeted drug delivery system for the induction of cell death in rodent osteosarcoma cells. Biores Open Access. 2016;5(1):299–307.

    Article  CAS  Google Scholar 

  13. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano. 2013;7(6):4830–7.

    Article  CAS  Google Scholar 

  14. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed.: Nanotechnol Biol Med. 2005;1(3):193–212.

    Article  CAS  Google Scholar 

  15. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2012;64:342–52.

    Article  Google Scholar 

  16. Yan L, Chen W, Zhu X, Huang L, Wang Z, Zhu G, et al. Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chem Commun. 2013;49(93):10938–40.

    Article  CAS  Google Scholar 

  17. Gaspar VM, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm Res. 2015;32(2):562–77.

    Article  CAS  Google Scholar 

  18. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1):1–20.

    Article  CAS  Google Scholar 

  19. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  CAS  Google Scholar 

  20. Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 2017;9:1334–55.

    Article  CAS  Google Scholar 

  21. Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloid Surf B. 2011;85(2):214–20.

    Article  CAS  Google Scholar 

  22. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloid Surf B. 2010;76(1):292–7.

    Article  CAS  Google Scholar 

  23. Motiei M, Kashanian S. Preparation of amphiphilic chitosan nanoparticles for controlled release of hydrophobic drugs. J Nanosci Nanotechnol. 2017;17(8):5226–32.

    Article  Google Scholar 

  24. Kashanian S, Azandaryani AH, Derakhshandeh K. New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomedicine. 2011;6:2393.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521–7.

    Article  CAS  Google Scholar 

  26. Javed S, Kohli K, Ahsan W. Solubility and dissolution enhancement of Silymarin with fulvic acid carrier. Int J Drug Dev Res. 2016;

  27. Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of gemcitabine. Int J Pharm. 2012;437(1):172–7.

    Article  CAS  Google Scholar 

  28. Severino P, Pinho SC, Souto EB, Santana MH. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloid Surf B. 2011;86(1):125–30.

    Article  CAS  Google Scholar 

  29. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  Google Scholar 

  30. Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. BBA-Biomembranes. 2009;1788(10):2259–66.

    Article  CAS  Google Scholar 

  31. Corbet C, Ragelle H, Pourcelle V, Vanvarenberg K, Marchand-Brynaert J, Préat V, et al. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: identification of an optimal combination of ligand structure, linker and grafting method. J Control Release. 2016;223:53–63.

    Article  CAS  Google Scholar 

  32. Dey SK, Mandal B, Bhowmik M, Ghosh LK. Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy. Braz J Pharm Sci. 2009;45(3):585–91.

    Article  CAS  Google Scholar 

  33. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules. 2007;8(8):2533–41.

    Article  CAS  Google Scholar 

  34. Pudney PD, Mutch KJ, Zhu S. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid–soap by infrared spectroscopy. Phys Chem Chem Phys. 2009;11(25):5010–8.

    Article  CAS  Google Scholar 

  35. Mathew ME, Mohan JC, Manzoor K, Nair S, Tamura H, Jayakumar R. Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym. 2010;80(2):442–8.

    Article  CAS  Google Scholar 

  36. Rojo L, Radley-Searle S, Fernandez-Gutierrez M, Rodriguez-Lorenzo LM, Abradelo C, Deb S, et al. The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. J Mater Chem B. 2015;3(13):2708–13.

    Article  CAS  Google Scholar 

  37. Kayat J, Mehra NK, Gajbhiye V, Jain NK. Drug targeting to arthritic region via folic acid appended surface-engineered multi-walled carbon nanotubes. J Drug Target. 2016;24(4):318–27.

    Article  CAS  Google Scholar 

  38. Haynes BP, Dowsett M, Miller WR, Dixon JM, Bhatnagar AS. The pharmacology of letrozole. J Steroid Biochem Mol Biol. 2003;87(1):35–45.

    Article  CAS  Google Scholar 

  39. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    CAS  PubMed  Google Scholar 

  40. O’Neill M, Paulin FE, Vendrell J, Ali CW, Thompson AM. The aromatase inhibitor letrozole enhances the effect of doxorubicin and docetaxel in an MCF7 cell line model. BioDiscovery. 2012;6:1–8.

    Google Scholar 

  41. Zhang Y, Zhou J, Yang C, Wang W, Chu L, Huang F, et al. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. Int J Nanomedicine. 2016;11:1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin H, Pi J, Yang F, Jiang J, Wang X, Bai H, et al. Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep. 2016;6:30782.

    Article  CAS  Google Scholar 

  43. Heidarian S, Derakhshandeh K, Adibi H, Hosseinzadeh L. Active targeted nanoparticles: preparation, physicochemical characterization and in vitro cytotoxicity effect. Res Pharm Sci. 2015;10(3):241.

    PubMed  PubMed Central  Google Scholar 

  44. Zhang Z, Lee SH, Feng S-S. Folate-decorated poly (lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials. 2007;28(10):1889–99.

    Article  Google Scholar 

  45. Pan J, Feng S-S. Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30(6):1176–83.

    Article  CAS  Google Scholar 

  46. Dhas NL, Ige PP, Kudarha RR. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technol. 2015;283:234–45.

    Article  CAS  Google Scholar 

  47. Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release. 2017;260:213–25.

    Article  CAS  Google Scholar 

  48. Zur M, Hanson AS, Dahan A. The complexity of intestinal permeability: assigning the correct BCS classification through careful data interpretation. Eur J Pharm Sci. 2014;61:11–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Kashanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemati Azandaryani, A., Kashanian, S. & Derakhshandeh, K. Folate Conjugated Hybrid Nanocarrier for Targeted Letrozole Delivery in Breast Cancer Treatment. Pharm Res 34, 2798–2808 (2017). https://doi.org/10.1007/s11095-017-2260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2260-x

Key words

Navigation