Skip to main content

Advertisement

Log in

Multi-Reservoir Phospholipid Shell Encapsulating Protamine Nanocapsules for Co-Delivery of Letrozole and Celecoxib in Breast Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In the current work, we propose a combined delivery nanoplatform for letrozole (LTZ) and celecoxib (CXB).

Methods

Multi-reservoir nanocarriers were developed by enveloping protamine nanocapsules (PRM-NCs) within drug-phospholipid complex bilayer.

Results

Encapsulation of NCs within phospholipid bilayer was confirmed by both size increase from 109.7 to 179.8 nm and reduction of surface charge from +19.0 to +7.78 mV. The multi-compartmental core-shell structure enabled biphasic CXB release with initial fast release induced by complexation with phospholipid shell followed by prolonged release from oily core. Moreover, phospholipid coating provided protection for cationic PRM-NCs against interaction with RBCs and serum proteins enabling their systemic administration. Pharmacokinetic analysis demonstrated prolonged circulation and delayed clearance of both drugs after intravenous administration into rats. The superior anti-tumor efficacy of multi-reservoir NCs was manifested as powerful cytotoxicity against MCF-7 breast cancer cells and marked reduction in the mammary tumor volume in Ehrlich ascites bearing mice compared with free LTZ-CXB combination. Moreover, the NCs induced apoptotic caspase activation and marked inhibition of aromatase expression and angiogenic marker, VEGF as well as inhibition of both NFκB and TNFα.

Conclusions

Multi-reservoir phospholipid shell coating PRM-NCs could serve as a promising nanocarrier for parenteral combined delivery of LTZ and CXB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIs:

Aromatase inhibitors

CL:

Clearance

CXB:

Celecoxib

DMEM:

Dulbecco’s modified eagle medium

EAT:

Ehrlich ascites tumor

EE:

Encapsulation efficiency

FBS:

Fetal bovine serum

GEN:

Genistein

LTZ:

Letrozole

MRT0-inf :

Mean residence time

MTT:

3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

NCs:

Nanocapsules

NF-κB:

Nuclear Factor Kappa-B

NPH:

Neutral protamine Hagedorn

PC:

Phosphatidylcholine

PCL:

Poly(Caprolactone)

PDI:

Polydispersityindex

PEG:

Poly(ethylene glycol)

PLGA:

Poly(lactic-co-glycolic acid)

PS:

Particle size

PRM:

Protamine

PTX:

Paclitaxel

PZI:

Protamine zinc insulin

RES:

Reticulo-endothelial system

SLS:

Sodium lauryl sulphate

TNF-α:

Tissue necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  1. Drozdekand S, Bazylińska U. Biocompatible oil core nanocapsules as potential co-carriers of paclitaxel and fluorescent markers: preparation, characterization, and bioimaging. Colloid Polym Sci. 2016;294:225–37.

    Article  Google Scholar 

  2. Prego C, Fabre M, Torres D, Alonso M. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res. 2006;23:549–56.

    Article  CAS  PubMed  Google Scholar 

  3. Abellan-Pose R, Rodríguez-Évora M, Vicente S, Csaba N, Évora C, Alonso MJ, et al. Biodistribution of radiolabeled polyglutamic acid and PEG-polyglutamic acid nanocapsules. Eur J Pharm Biopharm. 2017;112:155–63.

    Article  CAS  PubMed  Google Scholar 

  4. Rivera-Rodriguez GR, Lollo G, Montier T, Benoit JP, Passirani C, Alonso MJ, et al. In vivo evaluation of poly-l-asparagine nanocapsules as carriers for anti-cancer drug delivery. Int J Pharm. 2013;458:83–9.

    Article  CAS  PubMed  Google Scholar 

  5. Elzoghby AO, Hemasa AL, Freag MS. Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release. 2016;243:303–322.

  6. Gaber M, Medhat W, Hany M, Saher N, Fang J-Y, Elzoghby A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release. 2017;254:75-91.

  7. Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K, Elsayed MT, Hashem Y, Mohamed O. Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Curr Pharm Des. 2016;22:3305–23.

    Article  CAS  PubMed  Google Scholar 

  8. Yu X, Hou J, Shi Y, Su C, Zhao L. Preparation and characterization of novel chitosan–protamine nanoparticles for nucleus-targeted anticancer drug delivery. Int J Nanomedicine. 2016;11:6035.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elzoghby AO, Elgohary MM, Kamel NM. Chapter six-implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs. Adv Protein Chem Struct Biol. 2015;98:169–221.

    Article  CAS  PubMed  Google Scholar 

  10. Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 2013;34:196–208.

    Article  PubMed  Google Scholar 

  11. Yu F, Li Y, Chen Q, He Y, Wang H, Yang L, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm. 2016;103:136–48.

    Article  CAS  PubMed  Google Scholar 

  12. Mendes LP, Gaeti MPN, Avila d PHM, Sousa Vieira d M, Santos Rodrigues d B, Ávila Marcelino d RI, et al. Multicompartimental nanoparticles for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature. Pharm Res. 2014;31:1106–19.

    CAS  PubMed  Google Scholar 

  13. Kaklamaniand VG, Gradishar WJ. Endocrine therapy in the current management of postmenopausal estrogen receptor-positive metastatic breast cancer. Oncologist. 2017;22:507–517.

  14. Ferrati S, Fine D, You J, Rosa d E, Hudson L, Zabre E, et al. Leveraging nanochannels for universal, zero-order drug delivery in vivo. J Control Release. 2013;172:1011–9.

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Xu X, Fang L, Liu Y, Sun Y, Wang M, et al. The transdermal patches for site-specific delivery of letrozole: a new option for breast cancer therapy. AAPS PharmSciTech. 2010;11:1054–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen TL, Nguyen TH, Nguyen CK, Nguyen DH. Redox and pH-responsive poly (amidoamine) dendrimer-heparin conjugates via disulfide linkages for letrozole delivery. Biomed Res Int. 2017;2017:8589212.

  17. Nair HB, Huffman S, Veerapaneni P, Kirma NB, Binkley P, Perla RP, et al. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice. J Nanosci Nanotechnol. 2011;11:3789–99.

    Article  CAS  PubMed  Google Scholar 

  18. Hanamuraand T, Hayashi S-I. Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications. Breast Cancer. 2017;1–13. doi:10.1007/s12282-017-0772-1.

  19. Wong TY, Li F, Lin S-M, Chan FL, Chen S, Leung LK. Celecoxib increases miR-222 while deterring aromatase-expressing breast tumor growth in mice. BMC Cancer. 2014;14:426.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Prosperiand JR, Robertson FM. Cyclooxygenase-2 directly regulates gene expression of P450 Cyp19 aromatase promoter regions pII, pI. 3 and pI. 7 and estradiol production in human breast tumor cells. Prostaglandins Other Lipid Mediat. 2006;81:55–70.

    Article  Google Scholar 

  21. Ju R-J, Zeng F, Liu L, Mu L-M, Xie H-J, Zhao Y, et al. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma. Int J Nanomedicine. 2016;11:1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J Drug Target. 2008;16:733–40.

    Article  CAS  PubMed  Google Scholar 

  23. Said-Elbahr R, Nasr M, Alhnan MA, Taha I, Sammour O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur J Pharm Biopharm. 2016;103:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci. 2013;49:483–90.

    Article  CAS  PubMed  Google Scholar 

  25. Khattab SN, Naim SEA, El-Sayed M, El Bardan AA, Elzoghby AO, Bekhit AA, et al. Design and synthesis of new s-triazine polymers and their application as nanoparticulate drug delivery systems. New J Chem. 2016;40:9565–78.

    Article  CAS  Google Scholar 

  26. Elgindy N, Elkhodairy K, Molokhia A, ElZoghby A. Biopolymeric nanoparticles for oral protein delivery: design and in vitro evaluation. J Nanomed Nanotechnol. 2011;2:1–8.

  27. Elzoghby AO, Saad NI, Helmy MW, Samy WM, Elgindy NA. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur J Pharm Biopharm. 2013;85:444–51.

    Article  CAS  PubMed  Google Scholar 

  28. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm. 2013;84:487–96.

    Article  CAS  PubMed  Google Scholar 

  29. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilized flutamide dispersions with polyols and amino acids: preparation and in vitro evaluation. Drug Dev Ind Pharm. 2011;37:446–55.

    Article  CAS  PubMed  Google Scholar 

  30. Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res. 2013;30:512–22.

    Article  CAS  PubMed  Google Scholar 

  31. Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine. 2016;11:2975–96.

    Article  CAS  PubMed  Google Scholar 

  32. Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine. 2016;11:4799.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. 2013;8:1721.

    Article  PubMed  PubMed Central  Google Scholar 

  34. González-Aramundiz JV, Presas E, Dalmau-Mena I, Martínez-Pulgarín S, Alonso C, Escribano JM, et al. Rational design of protamine nanocapsules as antigen delivery carriers. J Control Release. 2017;245:62–9.

    Article  PubMed  Google Scholar 

  35. Choi JY, Ramasamy T, Kim SY, Kim J, Ku SK, Youn YS, et al. PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater. 2016;39:94–105.

    Article  CAS  PubMed  Google Scholar 

  36. Freag MS, Elnaggar YS, Abdallah OY. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomedicine. 2013;8:2385.

    PubMed  PubMed Central  Google Scholar 

  37. Awotwe-Otoo D, Agarabi C, Keire D, Lee S, Raw A, Yu L, et al. Physicochemical characterization of complex drug substances: evaluation of structural similarities and differences of protamine sulfate from various sources. AAPS J. 2012;14:619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm. 2010;74:397–405.

    Article  CAS  PubMed  Google Scholar 

  39. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions. Drug Dev Ind Pharm. 2011;37:754–64.

    Article  CAS  PubMed  Google Scholar 

  40. Dey SK, Mandal B, Bhowmik M, Ghosh LK. Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy. Bra J Pharm Sci. 2009;45:585–91.

    Article  CAS  Google Scholar 

  41. Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Characterization of solid-state forms of celecoxib. Eur J Pharm Sci. 2003;20:305–17.

    Article  CAS  PubMed  Google Scholar 

  42. Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491:113–22.

    Article  CAS  PubMed  Google Scholar 

  43. Nerella A, Basava R, Devi A. Formulation, optimization and in vitro characterization of letrozole loaded solid lipid nanoparticles. Int J Pharm Sci Drug Res. 2014;6:183–8.

    CAS  Google Scholar 

  44. Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly (epsilon-caprolactone) nanocapsules stabilized by poly (vinyl alcohol): formulation and process optimization. Int J Pharm. 2006;309:178–88.

    Article  CAS  PubMed  Google Scholar 

  45. Yadav DK, Pawar H, Wankhade S, Suresh S. Development of novel docetaxel phospholipid nanoparticles for intravenous administration: quality by design approach. AAPS PharmSciTech. 2015;16:855–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan J, Alexander A, Saraf S, Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release. 2013;168:50–60.

    Article  CAS  PubMed  Google Scholar 

  47. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm Res. 2013;30:2654–63.

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Qiu F, Yin X, Zou H, Gong M, Zhai Y, et al. Simultaneous LC-MS/MS quantification and pharmacokinetics of baicalin, chlorogenic acid and forsythin after intravenous administration of Shuang-huang-lian powder to dogs. Anal Methods. 2013;5:2784–92.

    Article  CAS  Google Scholar 

  49. Rosas C, Sinning M, Ferreira A, Fuenzalida M, Lemus D. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res. 2014;47:1.

    Article  Google Scholar 

  50. Majumder M, Xin X, Liu L, Girish GV, Lala PK. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sareddy GR, Geeviman K, Ramulu C, Babu PP. The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J Neuro-Oncol. 2012;106:99–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed O. Elzoghby.

Electronic Supplementary Material

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elzoghby, A.O., Mostafa, S.K., Helmy, M.W. et al. Multi-Reservoir Phospholipid Shell Encapsulating Protamine Nanocapsules for Co-Delivery of Letrozole and Celecoxib in Breast Cancer Therapy. Pharm Res 34, 1956–1969 (2017). https://doi.org/10.1007/s11095-017-2207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2207-2

KEY WORDS

Navigation