Skip to main content
Log in

An Efficient and Rapid Method to Monitor the Oxidative Degradation of Protein Pharmaceuticals: Probing Tyrosine Oxidation with Fluorogenic Derivatization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The loss of potency of protein therapeutics can be linked to the oxidation of specific amino acid residues leading to a great variety of oxidative modifications. The comprehensive identification of these oxidative modifications requires high-resolution mass spectrometry analysis, which requires time and expensive resources. Here, we propose a fluorogenic derivatization method of oxidized Tyr and Phe yielding benzoxazole derivatives, as an orthogonal technique for the rapid screening of protein oxidation.

Methods

Four model proteins, IgG1, human growth hormone (hGH), insulin and bovine serum albumin (BSA) were exposed to oxidation via peroxyl radicals and metal-catalyzed reactions and efficiently screened by fluorogenic derivatization of Tyr and Phe oxidation products. Complementary LC-MS analysis was done to identify the extent of methionine oxidation in oxidized proteins.

Results

The Fluorogenic derivatization technique can easily be adapted to a 96-well plate, in which several protein formulations can be screened in short time. Representatively for hGH, we show that the formation of benzoxazole parallels the oxidation of Met to methionine sulfoxide which enables estimation of Met oxidation by just recording the fluorescence.

Conclusions

Our rapid fluorescence based screening allows for the fast comparison of the stability of multiple formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3

Similar content being viewed by others

Abbreviations

AAPH:

2, 2′-azobis (2-methylpropionamidine) dihydrochloride

ABS:

4-(aminomethyl) benzenesulfonic acid

BMS:

bis (2-mercaptoethyl) sulfone

BSA:

Bovine serum albumin

DOCH:

2-amino-3-(3, 4-dioxocyclohexa-1, 5-dien-1-yl) propanoic acid

DOPA:

3, 4-dihydroxyphenylalanine

hGH:

Human growth hormone

IAA:

Iodoacetamide

IgG:

Immunoglobulin G

LTQ-FT:

Linear ion trap quadrupole-Fourier transform

MCO:

Metal catalyzed oxidation

Q-TOF:

Quadrupole time-of-flight

SEC:

Size exclusion chromatography

References

  1. Benjamin L, Quentin JB, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  Google Scholar 

  2. Li S, Schöneich C, Borchardt RT. Chemical instability of protein pharmaceuticals. Mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48:490–500.

    Article  CAS  PubMed  Google Scholar 

  3. Manning CM, Chou DK, Murphy MB, Payne WR, Katayama SD. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  PubMed  Google Scholar 

  4. Hawe A, Wiggenhorn M, Van De Weert M, Garbe HJ, Mahler HC, Jiskoot W. Forced degradation of therapeutic proteins. J Pharm Sci. 2011;101(3):895–913.

    Article  PubMed  Google Scholar 

  5. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88.

    Article  CAS  PubMed  Google Scholar 

  6. Schöneich C, Hageman JM, Borchardt TB. Stability of peptides and proteins. In K. Park (Ed.) Controlled Drug Delivery. Am Chem Soc 1997;205–28.

  7. Zhong X, Neumann P, Corbo M, Loh E. Recent advances in biotherapeutics drug discovery and development. Kapetanovic M I (Ed) Drug Discovery and Development-Present and Future. INTECH 2011 (www.intechopen.com).

  8. Torosantucci R, Schöneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31:541–53.

  9. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunology. 2011;48:860–6.

  10. Gaza-Bulesco G, Faldu S, Hurkmans K, Chumsae C, Liu H. Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein a and protein G. J Chromatogr B. 2008;870:55–62.

    Article  Google Scholar 

  11. Wei Z, Feng J, Lin HY, Mullapudi S, Bishop E, et al. Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syntical virus. Anal Chem. 2007;79:2797–805.

    Article  CAS  PubMed  Google Scholar 

  12. Kerwin B. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97:2924–35.

    Article  CAS  PubMed  Google Scholar 

  13. Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67:1676–81.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou S, Mozziconacci O, Kerwin AB, Schöneich C. Fluorogenic tagging methodology applied to characterize oxidized tyrosine and phenylalanine in an immunoglobulin monoclonal antibody. Pharm Res. 2013;30:1311–27.

    Article  CAS  PubMed  Google Scholar 

  15. Stadtman ER, Olivier CN. Metal-catalyzed oxidation of proteins. J Biol Chem. 1991;266(4):2005–8.

    CAS  PubMed  Google Scholar 

  16. Stadtman ER. Oxidation of free amino acid residues in proteins by radiolysis and metal- catalyzed reactions. Annu Rev Biochem. 1993;62:797–821.

    Article  CAS  PubMed  Google Scholar 

  17. Mozziconacci O, Ji JA, Wang J, Schöneich C. Metal-catalyzed oxidation of protein methionine residues in human parathyroid hormone (1-34): formation of homocysteine and a novel methionine-dependent hydrolysis reaction. Mol Pharm. 2012;10:739–55.

    Article  Google Scholar 

  18. Chen G, Pramanik NB. Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today. 2009;14:465–71.

    Article  CAS  PubMed  Google Scholar 

  19. Chen G, Warrack MB, Goodenough KA, Wei H, Wang-inverson BD, Tymiak AA. Characterization of protein therapeutics by mass spectrometry: recent developments and future developments. Drug Discov Today. 2011;16:58–64.

    Article  CAS  PubMed  Google Scholar 

  20. Schöneich C, Sharov VS. Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006;41:1507–20.

    Article  PubMed  Google Scholar 

  21. Kaltashov IA, Bobst CE, Abzalimov RR, Wang G, Baykal B, Wang S. Advances and challenges in analytical characterization of biotechnology products: mass spectrometry-based approaches to study properties and behavior of protein therapeutics. Biotechnol Adv. 2012;30:210–22.

    Article  CAS  PubMed  Google Scholar 

  22. Sharov VS, Dremina ES, Galeva NA, Gerstenecker GS, Li X, Dobrowsky RT, Stobaugh JF, Schöneich C. Fluorogenic tagging of peptide and protein 3-Nitrotyrosine with 4-(amino methyl)-benzenesulfonicacid for quantitative analysis of protein tyrosine nitration. Chromatographia. 2010;71:37–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharov VS, Dremina ES, Pennington J, Killmer J, Asmus C, Thorson M, Hong SJ, Li X, Stobaugh JF, Schöneich C. Selective fluorogenic derivatization of 3-nitrotyrosine and 3,4-dihydroxyphenylalanine in peptides: a method designed for quantitative proteomic analysis. Methods Enzymol. 2008;441:19–32.

    Article  CAS  PubMed  Google Scholar 

  24. Kishore RS, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194–210.

    Article  CAS  PubMed  Google Scholar 

  25. Betigeri S, Thakur A, Raghavan K. Use of 2-2′- Azobis (2- Amidinopropane) Dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs. Pharm Res. 2005;22:310–7.

    Article  CAS  PubMed  Google Scholar 

  26. Werber J, Wang JY, Milligan M, Li M, Ji AJ. Analysis of 2-2′- Azobis (2- Amidinopropane) Dihydrochloride degradation and hydrolysis in aqueous solution. J Pharm Sci. 2011;100(8):3307–15.

    Article  CAS  PubMed  Google Scholar 

  27. Ji J, Zhang B, Cheng W, Wang JY. Methionine, tryptophan, and Histidine Oxidation in a Model protein, PTH: Mechanisms and stabilization. J Pharm Sci. 2009;98:4485–500.

    Article  CAS  PubMed  Google Scholar 

  28. Steinmann D, Ji JA, Wang YJ, Schöneich C. Oxidation of human growth hormone by oxygen-centered radicals: formation of Leu-101 hydroperoxides and Tyr-103 oxidation products. Mol Pharm. 2012;9:803–14.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao F, Ghezzo-Schöneich E, Aced GI, Hong J, Milby T, Schöneich C. Metal-catalyzed oxidation of histidine in human growth hormone. Mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272:9019–29.

    Article  CAS  PubMed  Google Scholar 

  30. Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2007;1:2856–60.

    Article  Google Scholar 

  31. Xu H, Freitas MA. MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem spectroscopy data. Proteomics. 2009;9:1548–55.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mani RD, Abbatiello ES, Carr AS. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BioMed Central. 2012;13:S9.

    CAS  Google Scholar 

  33. Seema B, Ajit T, Raghavan K. Use of 2,2′- Azobis(2-Amidinopropane) Dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs. Pharm Res. 2005;22:310–317.

  34. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim Biophys Acta. 2001;1504:196–219.

  35. Berges J, Trouillas P, Houee-Levin C. Oxidation of protein tyrosine or methionine residues: from the amino acid to peptide. J Phys Conf Ser. 2011;261

  36. White RE. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol. 2000;40:133–57.

    Article  CAS  PubMed  Google Scholar 

  37. Capelle M, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm. 2007;65:131–48.

    Article  CAS  PubMed  Google Scholar 

  38. Niki E. Free radical initiators as source of water-or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–8.

    Article  CAS  PubMed  Google Scholar 

  39. Schöneich C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta. 2005;1703(2):111–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schöneich.

Electronic supplementary material

ESM 1

(DOCX 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommana, R., Mozziconacci, O., John Wang, Y. et al. An Efficient and Rapid Method to Monitor the Oxidative Degradation of Protein Pharmaceuticals: Probing Tyrosine Oxidation with Fluorogenic Derivatization. Pharm Res 34, 1428–1443 (2017). https://doi.org/10.1007/s11095-017-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2159-6

KEY WORDS

Navigation