Skip to main content
Log in

The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Liposomes have been developed as versatile nanocarriers for various pharmacological agents. The effect of surface charges on the cellular uptake of the liposomes has been studied by various methods using mainly fixed cells with inevitable limitations. Live cell imaging has been proposed as an alternative methods to overcome the limitations of the fixed cell-based analysis. In this study, we aimed to investigate the effects of surface charges on cellular association and internalization of the liposomes using live cell imaging.

Methods

We studied the cellular association and internalization of liposomes with different surface charge using laser scanning confocal microscopy (LSCM) equipped with live cell chamber system. Flow cytometry was also carried out using flow cytometer (FACS) for comparison.

Results

All of the cationic, neutral and anionic liposomes showed time-dependent cellular uptake through specific endocytic pathways. In glioblastoma U87MG cells, the cationic and anionic liposomes were mainly taken up via macropinocytosis, while the neutral liposomes mainly via caveolae-mediated endocytosis. In fibroblast NIH/3T3 cells, all of the three liposomes entered into the cell via clathrin-mediated endocytosis.

Conclusions

This study provides a better understanding on the cellular uptake mechanisms of the liposomes, which could contribute significantly to development of liposome-based drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Cytochalasin D

CPZ:

Chlorpromazine

DIC:

Differential interference contrast

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s modified eagle’s medium

FACS:

Flow cytometer

GS:

Genistein

HBG:

HEPES buffered glucose (10 mM HEPES, 5% glucose, pH 7.4)

HBS:

HEPES buffered saline (10 mM HEPES, 150 mM NaCl, pH 7.4)

LSCM:

Laser scanning confocal microscopy

PBS:

Phosphate buffered saline

PDI:

Polydispersity index

PEG-PE:

1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol)-2000]

POPC:

1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine

POPG:

1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-91-glycerol]

PTRF:

Polymerase I and transcript release factor

Rh-PE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)

References

  1. Kim J-S. Liposomal drug delivery system. J Pharm Investig. 1-6.

  2. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug Delivery. INTECH; 2014.

  4. Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998;37(37):12875–83.

    Article  CAS  PubMed  Google Scholar 

  5. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10.

    Article  CAS  Google Scholar 

  7. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7(1):5577–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khodjakov A, Rieder CL. Imaging the division process in living tissue culture cells. Methods. 2006;38(1):2–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Fenech M, Shi Q. Micronucleus formation detected by live-cell imaging. Mutagenesis. 2011;26(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  11. Watson P. Live cell imaging for target and drug discovery. Drug News Perspect. 2009;22(2):69–79.

    Article  PubMed  Google Scholar 

  12. Hornick JE, Bader JR, Tribble EK, Trimble K, Breunig JS, Halpin ES, et al. Live-cell analysis of mitotic spindle formation in taxol-treated cells. Cell Motil Cytoskeleton. 2008;65(8):595–613.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fiume G, Di Rienzo C, Marchetti L, Pozzi D, Caracciolo G, Cardarelli F. Single-cell real-time imaging of transgene expression upon lipofection. Biochem Biophys Res Commun. 2016;474(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  14. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488–96.

    Article  CAS  PubMed  Google Scholar 

  15. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science. 1994;266(5192):1821–8.

    Article  CAS  PubMed  Google Scholar 

  16. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49(23):6449–65.

    CAS  PubMed  Google Scholar 

  17. Cone Jr CD. The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann N Y Acad Sci. 1974;238:420–35.

    Article  CAS  PubMed  Google Scholar 

  18. Kang JH, Battogtokh G, Ko YT. Folate-targeted liposome encapsulating chitosan/oligonucleotide polyplexes for tumor targeting. AAPS PharmSciTech. 2014;15(5):1087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ko YT, Falcao C, Torchilin VP. Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK)(2) and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm. 2009;6(3):971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruttala HB, Ko YT. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm Res. 2015;32(3):1002–16.

    Article  CAS  PubMed  Google Scholar 

  21. Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol. 2013;10(2):45.

    Google Scholar 

  22. Patel H, Marley S, Greener L, Gordon M. Subcellular distribution of p210BCR-ABL in CML cell lines and primary CD34+ CML cells. Leukemia. 2008;22(3):559–71.

    Article  CAS  PubMed  Google Scholar 

  23. Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011;2011:939851.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kang JH, Ko YT. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int J Nanomedicine. 2015;10(Spec Iss):33–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruttala HB, Ko YT. Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf B: Biointerfaces. 2015;128:419–26.

    Article  CAS  PubMed  Google Scholar 

  26. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  27. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  28. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elouahabi A, Ruysschaert J-M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther. 2005;11(3):336–47.

    Article  CAS  PubMed  Google Scholar 

  30. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12(2):255–64.

    Google Scholar 

  31. Adami RC, Seth S, Harvie P, Johns R, Fam R, Fosnaugh K, et al. An amino acid-based amphoteric liposomal delivery system for systemic administration of siRNA. Mol Ther. 2011;19(6):1141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    CAS  PubMed  Google Scholar 

  33. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y-L, Van Cuong N, Hsieh M-F. Endocytosis pathways of the folate tethered star-shaped PEG-PCL micelles in cancer cell lines. Polymers. 2014;6(3):634–50.

    Article  Google Scholar 

  35. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One. 2011;6(9):e24438.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Exocytosis and Endocytosis. 2008:15–33.

  37. Stan RV. Endocytosis pathways in endothelium: how many? Am J Phys Lung Cell Mol Phys. 2006;290(5):L806–L8.

    CAS  Google Scholar 

  38. Dutta D, Donaldson JG. Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist. 2012;2(4):203–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci. 2006;119(22):4758–69.

    Article  CAS  PubMed  Google Scholar 

  40. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  41. Lajoie P, Nabi IR. Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol. 2010;282:135–63.

    Article  CAS  PubMed  Google Scholar 

  42. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  43. Brodsky FM, Chen C-Y, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol. 2001;17(1):517–68.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by the Basic Science Research Program (NRF2014R1A1A2053373) and the Pioneer Research Center Program (NRF2014M3C1A3054153) of the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Tag Ko.

Additional information

Ji Hee Kang and Woo Young Jang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.H., Jang, W.Y. & Ko, Y.T. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging. Pharm Res 34, 704–717 (2017). https://doi.org/10.1007/s11095-017-2097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2097-3

KEY WORDS

Navigation