Skip to main content

Advertisement

Log in

Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Bcl-2 is an anti-apoptotic gene that is frequently overexpressed in human cancers. G3139 is an antisense oligonucleotide against bcl-2 that has shown limited efficacy in clinical trials. Here, we report the synthesis of a new antisense oligonucleotide containing additional chemical modifications and its delivery using nanoparticles.

Methods

An oligonucleotide G3139-GAP was synthesized, which has 2’-O-methyl nucleotides at the 5’ and 3’ ends based on a “gapmer” design. Furthermore, G3139-GAP was incorporated into lipid nanoparticles (LNPs) composed of DOTAP/egg PC/cholesterol/Tween 80. The LNP-loaded G3139-GAP was evaluated in A549 lung cancer cells both in vitro and in a murine xenograft model for biological activity and therapeutic efficacy.

Results

The LNPs showed excellent colloidal and serum stability, and high encapsulation efficiency for G3139-GAP. They have a mean particle diameter and zeta potential of 134 nm and 9.59 mV, respectively. G3139-GAP-LNPs efficiently downregulated bcl-2 expression in A549 cells, as shown by 40% and 83% reduction in mRNA and protein levels, respectively. Furthermore, G3139-GAP-LNPs were shown to inhibit tumor growth, prolong survival, and downregulate tumor bcl-2 expression in an A549 murine xenograft tumor model. These data indicate that G3139-GAP-LNPs have excellent anti-tumor efficacy and warrant further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2’OMe:

2’-O-methyl

ASOs:

Antisense oligonucleotides

Bcl-2:

B-cell lymphoma 2

DLS:

Dynamic lighting scattering

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

Egg PC:

Egg L-α-phosphatidylcholine

GAP:

Gapmer

LNPs:

Lipid nanoparticles

PS:

Phosphorothioate

PTX:

Paclitaxel

References

  1. Chiu SJ, Liu S, Perrotti D, Marcucci G, Lee RJ. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J Control Release. 2006;112(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  2. Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene. 2003;22(56):9087–96.

    Article  CAS  PubMed  Google Scholar 

  3. Pirollo KF, Rait A, Sleer LS, Chang EH. Antisense therapeutics: from theory to clinical practice. Pharmacol Ther. 2003;99(1):55–77.

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Koh C, Liu S. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm. 2009;6:221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crooke ST. Progress in antisense technology: the end of the beginning. Methods Enzymol. 2000;313:3–45.

    Article  CAS  PubMed  Google Scholar 

  6. Weecharangsan W, Yu B, Zheng Y, Liu S, Pang JX, Lee LJ, et al. Efficient delivery of antisense oligodeoxyribonucleotide G3139 by human serum albumin-coated liposomes. Mol Pharm. 2009;6(6):1848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prakash TP, Lima WF, Murray HM, Elbashir S, Cantley W, Foster D, et al. Lipid nanoparticles improve activity of single-stranded siRNA and gapmer antisense oligonucleotides in animals. ACS Chem Biol. 2013;8(7):1402–6.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta N, Fisker N, Asselin M-C, Lindholm M, Rosenbohm C, Ørum H, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS ONE. 2010;5(5):e10682.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geary RS, Baker BF, Crooke ST. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro(®)): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet. 2015;54(2):133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011;6(9):1130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53.

    Article  PubMed  Google Scholar 

  12. Maurer N, Wong KF, Stark H, Louie L, McIntosh D, Wong T, et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J. 2001;80(5):2310–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Technologies, A. May 2008 RNeasy ® Plus 96 Handbook For Purification of Total RNA from Animal and Sample & Assay Technologies QIAGEN Sample and Assay Technologies. 2008, No. December 2005.

  14. Liu S, Liu Z, Xie Z, Pang J, Yu J, Lehmann E, et al. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood. 2008;111(4):2364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int. 2004;45(2–3):397–407.

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  18. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117(9):2408–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guilbaud N, Kraus-Berthier L, Meyer-Losic F, Malivet V, Chacun C, Jan M, et al. Marked antitumor activity of a new potent acronycine derivative in orthotopic models of human solid tumors. Clin Cancer Res. 2001;7(8):2573–80.

    CAS  PubMed  Google Scholar 

  20. Yung BC, Li J, Zhang M, Cheng X, Li H, Yung EM, et al. Lipid nanoparticles composed of quaternary amine-tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of AntimiR-21 for lung cancer. Mol Pharm. 2016;13(2):653–62.

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, et al. Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis. 2013;4:e814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(39):15549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kibbe WA. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 2007;35(2):43–6.

    Article  Google Scholar 

  24. Crooke ST. Antisense drug technology principles, strategies, and applications. CRC Press; 2008.

  25. Crooke ST. Basic principles of antisense technology. Antisense Drug Technol; 2001, p. 1–28.

  26. Smart Oligo and Probe Design. Available from http://www.genelink.com/literature/ps/duplexstability.pdf. Accessed 17 Nov 2016.

  27. Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012; 937–54.

  28. Mou T-C, Gray DM. The high binding affinity of phosphorothioate-modified oligomers for Ff gene 5 protein is moderated by the addition of C-5 propyne or 2’-O-methyl modifications. Nucleic Acids Res. 2002;30(3):749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Modifications that block nuclease degradation https://www.idtdna.com/pages/decoded/decoded-articles/core-concepts/decoded/2014/01/14/modification-highlight-modifications-that-block-nuclease-degradation. Accessed 29 Mar 2016.

  30. Frey PA, Sammons RD. Bond order and charge localization in nucleoside phosphorothioates. Science. 1985;228(4699):541–5.

    Article  CAS  PubMed  Google Scholar 

  31. Yamada H, Gursel I, Takeshita F, Conover J, Ishii KJ, Gursel M, et al. Effect of suppressive DNA on CpG-induced immune activation. J Immunol. 2002;169(10):5590–4.

    Article  CAS  PubMed  Google Scholar 

  32. Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006; 533–40.

  33. Zelphati O, Szoka FC. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm Res. 1996;13(9):1367–72.

    Article  CAS  PubMed  Google Scholar 

  34. Prabhakar K, Afzal SM, Surender G, Kishan V. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm Sin B. 2013;3(5):345–53.

    Article  Google Scholar 

  35. Zhao Y, Wang Z, Zhang W, Jiang X. Adsorbed tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules. Nanoscale. 2010;2(10):2114–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016;99:129–37.

    Article  CAS  PubMed  Google Scholar 

  37. Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 1(2–3): 78–82.

  38. Zhou Z, Han Z, Lu Z-R. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging. Biomaterials. 2016;85:168–79.

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Han Z, Schur RM, Lu Z-R. Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. 2016.

  40. Downward J. Targeting RAS and PI3K in lung cancer. Nat Med. 2008;14(12):1315–6.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported in part by a contract from Nanjing Luye Sike Pharmaceutical Co. Ltd. (Nanjing, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Cheng or Robert J. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Liu, Q., Li, H. et al. Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer. Pharm Res 34, 310–320 (2017). https://doi.org/10.1007/s11095-016-2063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2063-5

KEY WORDS

Navigation