Skip to main content

Advertisement

Log in

Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Previously, a respirable powder (RP) formulation of pirfenidone (PFD) was developed for reducing phototoxic risk; however, PFD-RP demonstrated unacceptable in vitro inhalation performance. The present study aimed to develop a new RP system of PFD with favorable inhalation properties by spray-drying method.

Methods

Spray-dried PFD (SD/PFD) was prepared by spray-drying with L-leucine, and the physicochemical properties and efficacy in an antigen-sensitized airway inflammation model were assessed. A pharmacokinetic study was also conducted after intratracheal and oral administration of PFD formulations.

Results

Regarding powder characterization, SD/PFD had dimpled surface with the mean diameter of 1.793 μm. In next generation impactor analysis, SD/PFD demonstrated high in vitro inhalation performance without the need of carrier particles, and the fine particle fraction of SD/PFD was calculated to be 62.4%. Insufflated SD/PFD (0.3 mg-PFD/rat) attenuated antigen-evoked inflammatory events in the lung, including infiltration of inflammatory cells and myeloperoxidase activity. Systemic exposure level of PFD after insufflation of SD/PFD at the pharmacologically effective dose was 600-fold lower than that after oral administration of PFD at the phototoxic dose.

Conclusion

SD/PFD would be suitable for inhalation, and the utilization of an RP system with SD/PFD would provide a safer medication compared with oral administration of PFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC0-inf :

Area under the concentration versus time curve

BALF:

Bronchoalveolar lavage fluid

C max :

Maximum concentration

EF:

Emitted fraction

FPF:

Fine particle fraction

HPLC:

High performance liquid chromatography

ICH:

The International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for human use

IPF:

Idiopathic pulmonary fibrosis

MPO:

Myeloperoxidase

MRT:

Mean residence time

NGI:

Next generation impactor

OVA:

Ovalbumin

OVA-RP:

Respirable powder formulation of ovalbumin

PBS:

Phosphate buffered saline

PFD:

Pirfenidone

PFD-RP:

Respirable powder formulation of pirfenidone

RP:

Respirable powder

SD/PFD:

Spray-dried pirfenidone

SEM:

Scanning electron microscopy

t 1/2 :

Elimination half-life

TMBZ:

3,3′,5,5′-tetramethylbenzidine

UPLC/ESI-MS:

Ultra-performance liquid chromatography equipped with electrospray ionization mass spectrometry

VMD:

Volume median diameter

References

  1. Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K. Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev. 2011;20:85–97.

    Article  CAS  PubMed  Google Scholar 

  2. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;291:367–73.

    CAS  PubMed  Google Scholar 

  3. Hisatomi K, Mukae H, Sakamoto N, Ishimatsu Y, Kakugawa T, Hara S, et al. Pirfenidone inhibits TGF-beta1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulm Med. 2012;12:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lasky J. Pirfenidone. IDrugs. 2004;7:166–72.

    CAS  PubMed  Google Scholar 

  5. Takeda Y, Tsujino K, Kijima T, Kumanogoh A. Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adher. 2014;8:361–70.

    Article  Google Scholar 

  6. Hilberg O, Simonsen U, du Bois R, Bendstrup E. Pirfenidone: significant treatment effects in idiopathic pulmonary fibrosis. Clin Respir J. 2012;6:131–43.

    Article  CAS  PubMed  Google Scholar 

  7. Richeldi L, Yasothan U, Kirkpatrick P. Pirfenidone. Nat Rev Drug Discov. 2011;10:489–90.

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:821–9.

    Article  CAS  PubMed  Google Scholar 

  9. Carter NJ. Pirfenidone: in idiopathic pulmonary fibrosis. Drugs. 2011;71:1721–32.

    Article  CAS  PubMed  Google Scholar 

  10. Seto Y, Inoue R, Kato M, Yamada S, Onoue S. Photosafety assessments on pirfenidone: photochemical, photobiological, and pharmacokinetic characterization. J Photochem Photobiol B. 2013;120:44–51.

    Article  CAS  PubMed  Google Scholar 

  11. International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH Guideline S10 Guidance on photosafety evaluation of pharmaceuticals. 2013.

  12. Onoue S, Aoki Y, Kawabata Y, Matsui T, Yamamoto K, Sato H, et al. Development of inhalable nanocrystalline solid dispersion of tranilast for airway inflammatory diseases. J Pharm Sci. 2011;100:622–33.

    Article  CAS  PubMed  Google Scholar 

  13. Onoue S, Sato H, Kawabata Y, Mizumoto T, Hashimoto N, Yamada S. In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J Control Release. 2009;138:16–23.

    Article  CAS  PubMed  Google Scholar 

  14. Onoue S, Seto Y, Kato M, Aoki Y, Kojo Y, Yamada S. Inhalable powder formulation of pirfenidone with reduced phototoxic risk for treatment of pulmonary fibrosis. Pharm Res. 2013;30:1586–96.

    Article  CAS  PubMed  Google Scholar 

  15. Buttini F, Colombo P, Rossi A, Sonvico F, Colombo G. Particles and powders: tools of innovation for non-invasive drug administration. J Control Release. 2012;161:693–702.

    Article  CAS  PubMed  Google Scholar 

  16. Lin YW, Wong J, Qu L, Chan HK, Zhou QT. Powder production and particle engineering for dry powder inhaler formulations. Curr Pharm Des. 2015;21:3902–16.

    Article  CAS  PubMed  Google Scholar 

  17. Belotti S, Rossi A, Colombo P, Bettini R, Rekkas D, Politis S, et al. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm. 2015;93:165–72.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SH, Teo J, Heng D, Zhao Y, Ng WK, Chan HK, et al. A novel inhaled multi-pronged attack against respiratory bacteria. Eur J Pharm Sci. 2015;70:37–44.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou QT, Morton DA, Yu HH, Jacob J, Wang J, Li J, et al. Colistin powders with high aerosolisation efficiency for respiratory infection: preparation and in vitro evaluation. J Pharm Sci. 2013;102:3736–47.

    Article  CAS  PubMed  Google Scholar 

  20. Aquino RP, Stigliani M, Del Gaudio P, Mencherini T, Sansone F, Russo P. Nanospray drying as a novel technique for the manufacturing of inhalable NSAID powders. Scientific World J. 2014;2014:838410.

    Google Scholar 

  21. Onoue S, Sato H, Ogawa K, Kojo Y, Aoki Y, Kawabata Y, et al. Inhalable dry-emulsion formulation of cyclosporine A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Pharm Biopharm. 2012;80:54–60.

    Article  CAS  PubMed  Google Scholar 

  22. Chew NY, Shekunov BY, Tong HH, Chow AH, Savage C, Wu J, et al. Effect of amino acids on the dispersion of disodium cromoglycate powders. J Pharm Sci. 2005;94:2289–300.

    Article  CAS  PubMed  Google Scholar 

  23. Misaka S, Sato H, Yamauchi Y, Onoue S, Yamada S. Novel dry powder formulation of ovalbumin for development of COPD-like animal model: physicochemical characterization and biomarker profiling in rats. Eur J Pharm Sci. 2009;37:469–76.

    Article  CAS  PubMed  Google Scholar 

  24. Costabel U, Guzman J. Bronchoalveolar lavage in interstitial lung disease. Curr Opin Pulm Med. 2001;7:255–61.

    Article  CAS  PubMed  Google Scholar 

  25. Misaka S, Aoki Y, Karaki S, Kuwahara A, Mizumoto T, Onoue S, et al. Inhalable powder formulation of a stabilized vasoactive intestinal peptide (VIP) derivative: anti-inflammatory effect in experimental asthmatic rats. Peptides. 2010;31:72–8.

    Article  CAS  PubMed  Google Scholar 

  26. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Begat R, Price R, Harris H, Morton DAV, Staniforth JN. The influence of force control agents on the cohesive-adhesive balance in dry powder inhaler formulations. KONA. 2005;23:109–21.

    Article  CAS  Google Scholar 

  28. Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care. 2000;45:652–66.

    CAS  PubMed  Google Scholar 

  29. Labiris NR, Dolovich MB. Pulmonary drug delivery. part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.

    Article  CAS  PubMed  Google Scholar 

  31. Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014;75:32–52.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.

    Article  CAS  PubMed  Google Scholar 

  33. Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase. Curr Opin Hematol. 2000;7:53–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pesci A, Ricchiuti E, Ruggiero R, De Micheli A. Bronchoalveolar lavage in idiopathic pulmonary fibrosis: what does it tell us? Respir Med. 2010;104 Suppl 1:S70–73.

    Article  PubMed  Google Scholar 

  35. Beeh KM, Beier J, Kornmann O, Buhl R. Neutrophilic inflammation in induced sputum of patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20:138–43.

    PubMed  Google Scholar 

  36. Spond J, Case N, Chapman RW, Crawley Y, Egan RW, Fine J, et al. Inhibition of experimental acute pulmonary inflammation by pirfenidone. Pulm Pharmacol Ther. 2003;16:207–14.

    Article  CAS  PubMed  Google Scholar 

  37. Inomata M, Kamio K, Azuma A, Matsuda K, Kokuho N, Miura Y, et al. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis. Respir Res. 2014;15:16.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025–37.

    Article  CAS  Google Scholar 

  39. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1:338–44.

    Article  CAS  PubMed  Google Scholar 

  40. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Science, Sports and Culture, Japan. Sharon Shui Yee Leung was supported by Faculty of Pharmacy postdoctoral fellowship at the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The timeline for the pharmacological experiment for evaluating the anti-inflammatory effects of insufflated SD/PFD. i.p.: intraperitoneal; and i.t.: intratracheal administration. (GIF 23 kb)

High resolution image (TIF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto, Y., Suzuki, G., Leung, S.S.Y. et al. Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling. Pharm Res 33, 1447–1455 (2016). https://doi.org/10.1007/s11095-016-1887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1887-3

KEY WORDS

Navigation