Skip to main content
Log in

Inhalable Spray-Freeze-Dried Powder with L-Leucine that Delivers Particles Independent of Inspiratory Flow Pattern and Inhalation Device

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this study was to develop inhalable particles that can reach deep into the lungs efficiently independent of inhalation patterns of patients and inhalation devices. We prepared porous particles including L-leucine (Leu), a dispersive agent, by a spray-freeze-drying (SFD) method and examined the influence of inspiratory flow patterns and inhalation devices with various inhalation resistances.

Methods

Four types of SFD powder with different Leu contents (0–10%) were prepared. Scanning electron microscopy and laser diffraction were used to measure the morphology and size distribution of the powders. In-vitro inhalation characteristics were determined using a twin-stage liquid impinger equipped with an inspiratory flow pattern simulator. The effects of Leu on the adhesion force and electrostatic property of the particles were evaluated.

Results

The inhalation performance of the powders was improved by the addition of Leu. The powders with Leu showed a high inhalation performance regardless of inspiratory flow patterns and devices. The addition of Leu decreased the adhesion force and increased the surface potential of the powders.

Conclusions

The SFD particles with Leu showed high inhalation performance regardless of the inhalation patterns and devices, which was attributed to the decreased adhesion force between particles and increased dispersibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AUC:

Area under the flow rate-time curve

D50:

Geometric mean diameter

DPI:

Dry powder inhaler

FIR:

Flow increase rate

FlNa:

Sodium fluorescein

Leu:

L-leucine

Man:

D-(-)-mannitol

MMAD:

Mass median aerodynamic diameter

OE:

Output efficiency

PBS:

Phosphate buffer solution

PFR:

Peak flow rate

pMDI:

Pressurized metered-dose inhaler

SEM:

Scanning electron microscopy

SFD:

Spray-freeze-drying

St 2:

Stage 2 deposition

TSLI:

Twin-stage liquid impinger

REFERENCES

  1. Dalby R, Suman J. Inhalation therapy: technological milestones in asthma treatment. Adv Drug Deliv Rev. 2003;55(7):779–91.

    Article  CAS  PubMed  Google Scholar 

  2. Adi H, Young PM, Chan HK, Agus H, Traini D. Co-spray-dried mannitol-ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur J Pharm Sci. 2010;40(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  3. Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  4. Timsina MP, Martin GP, Marriott C, Ganderton D, Yianneskis M. Drug delivery to the respiratory tract using dry powder inhalers. Int J Pharm. 1994;101:1–13.

    Article  CAS  Google Scholar 

  5. Newman SP, Hollingworth A, Clark R. Effect of different modes of inhalation on drug delivery from a dry powder inhaler. Int J Pharm. 1994;102:127–32.

    Article  CAS  Google Scholar 

  6. Borgström L, Bisgaard H, O’Callaghan C, Pedersen S. Dry-powder Inhalers. In: Bisgaard H, O’Callaghan C, Smaldone GC, editors. Drug delivery to the lungs. New York: Marcel Dekker, Inc.; 2002. p. 421–48.

    Google Scholar 

  7. Le VN, Robins E, Flament MP. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations. Eur J Pharm Biopharm. 2012;80(3):596–603.

    Article  CAS  PubMed  Google Scholar 

  8. Guenette E, Barrett A, Kraus D, Brody R, Harding L, Magee G. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Int J Pharm. 2009;380(1–2):80–8.

    Article  CAS  PubMed  Google Scholar 

  9. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  10. Young PM, Kwork P, Adi H, Chan HK, Traini D. Lactose composite carriers for respiratory delivery. Pharm Res. 2009;26(4):802–10.

    Article  CAS  PubMed  Google Scholar 

  11. Baily MM, Gorman EM, Munson EJ, Berkland C. Pure insulin nanoparticle agglomerates for pulmonary delivery. Lungmuir. 2008;24(33):13614–20.

    Article  Google Scholar 

  12. Raffin RP, Colombo P, Sonvico F, Rossi A, Jornada DS, Pohlmann AR, et al. Agglomerates containing pantoprazole microparticles: modulating the drug release. AAPS PharmSciTech. 2009;10(2):335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Russo P, Sacchetti C, Pasquali I, Bettini R, Massimo G, Colombo P, et al. Primary microparticles and agglomerates of morphine for nasal insufflation. J Pharm Sci. 2006;95(12):2553–61.

    Article  CAS  PubMed  Google Scholar 

  14. Adi H, Larson I, Chiou H, Young P, Traini D, Stewart P. Agglomerate strength and dispersion of salmeterol xinafoate from powder mixtures for inhalation. Pharm Res. 2006;23(11):2556–65.

    Article  CAS  PubMed  Google Scholar 

  15. Iida K, Hayakawa Y, Okamoto H, Danjo K, Leuenberger H. Preparation of dry powder inhalation by surface treatment of lactose carrier particles. Chem Pharm Bull (Tokyo). 2003;51(1):1–5.

    Article  CAS  Google Scholar 

  16. de Boer AH, Chan HK, Price R. A critical view on lactose-based drug formulation and device studies for dry powder inhalation: which are relevant and what interactions to expect? Adv Drug Deliv Rev. 2012;64(3):257–74.

    Article  PubMed  Google Scholar 

  17. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol (1985). 1998;85(2):379–85.

    CAS  Google Scholar 

  19. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42.

    Article  CAS  PubMed  Google Scholar 

  20. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  21. Chew NY, Shekunov BY, Tong HH, Chow AH, Savage C, Wu J, et al. Effect of amino acids on the dispersion of disodium cromoglycate powders. J Pharm Sci. 2005;94(10):2289–300.

    Article  CAS  PubMed  Google Scholar 

  22. Li HY, Seville PC, Williamson IJ, Birchall JC. The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J Gene Med. 2005;7(3):343–53.

    Article  CAS  PubMed  Google Scholar 

  23. Ungaro F, Giovino C, Coletta C, Sorrentino R, Miro A, Quaglia F. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur J Pharm Sci. 2010;41(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  24. Duan J, Vogt FG, Li X, Hayes Jr D, Mansour HM. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine. 2013;8:3489–505.

    PubMed  PubMed Central  Google Scholar 

  25. Lohrmann M, Kappl M, Butt HJ, Urbanetz NA, Lippold BC. Adhesion forces in interactive mixtures for dry powder inhalers-evaluation of a new measuring method. Eur J Pharm Biopharm. 2007;67(2):579–86.

  26. Malmberg LP, Rytilä P, Happonen P, Haahtela T. Inspiratory flows through dry powder inhaler in chronic obstructive pulmonary disease: age and gender rather than severity matters. Int J Chron Obstruct Pulmon Dis. 2010;5:257–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kanabuchi K, Kondo T, Tanigaki T, Tajiri S, Hayama N, Takahari Y, et al. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship. Tokai J Exp Clin Med. 2011;36(1):1–4.

    PubMed  Google Scholar 

  28. Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96(5):293–304.

    Article  CAS  PubMed  Google Scholar 

  29. Stocks J, Hislop AA. Structure and function on the respiratory system. In: Bisgaard H, O’Callaghan C, Smaldone GC, editors. Drug delivery to the lungs. New York: Marcel Dekker, Inc.; 2002. p. 47–104.

    Google Scholar 

  30. Okamoto H, Nishida S, Todo H, Sakakura Y, Iida K, Danjo K. Pulmonary gene delivery by chitosan-pDNA complex powder prepared with supercritical carbon dioxide. J Pharm Sci. 2003;92(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  31. Hira D, Okuda T, Kito D, Ishizeki K, Okada T, Okamoto H. Inhalation performance of physically mixed dry powders evaluated with a simple simulator for human inspiratory flow patterns. Pharm Res. 2010;27:2131–40.

    Article  CAS  PubMed  Google Scholar 

  32. Hira D, Okuda T, Ichihashi M, Mizutani A, Ishizeki K, Okada T, et al. Influence of peak inspiratory flow rate and pressure drop on inhalation property of dry powder inhalers. Chem Pharm Bull. 2012;60(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bürki K, Jeon I, Arpagaus C, Betz G. New insights into respirable protein powder preparation using a nano spray dryer. Int J Pharm. 2011;408(1–2):248–56.

    Article  PubMed  Google Scholar 

  34. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J Aerosol Med Pulm Drug Deliv. 2011;24(4):175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nolan LM, Tajber L, McDonald BF, Barham AS, Corrigan OI, Healy AM. Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Eur J Pharm Sci. 2009;37(5):593–602.

    Article  CAS  PubMed  Google Scholar 

  36. Claus S, Schoenbrodt T, Weiler C, Friess W. Novel dry powder inhalation system based on dispersion of lyophilisates. Eur J Pharm Sci. 2011;43(1–2):32–40.

    Article  CAS  PubMed  Google Scholar 

  37. Bouchard A, Jovanović N, Hofland GW, Jiskoot W, Mendes E, Crommelin DJ, et al. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions. Eur J Pharm Biopharm. 2008;68(3):781–94.

    Article  CAS  PubMed  Google Scholar 

  38. Reverchon E, Della Porta G, Pallado P. Supercritical antisolvent precipitation of salbutamol microparticles. Powder Technol. 2001;114:17–22.

    Article  CAS  Google Scholar 

  39. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri E, Matinkhoo S, et al. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery. Pharm Res. 2014;31(2):449–65.

    Article  CAS  PubMed  Google Scholar 

  40. Yang JJ, Liu CY, Quan LH, Liao YH. Preparation and in vitro aerosol performance of spray-dried Shuang-Huang-Lian corrugated particles in carrier-based dry powder inhalers. AAPS PharmSciTech. 2012;13(3):816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by Adaptable and Seamless Technology Transfer Program through target-driven R&D, Japan Science and Technology Agency (JST). We thank Hitachi Automotive Systems, Co., Ltd., for supplying inspiratory flow meter and inhalation devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirozazu Okamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otake, H., Okuda, T., Hira, D. et al. Inhalable Spray-Freeze-Dried Powder with L-Leucine that Delivers Particles Independent of Inspiratory Flow Pattern and Inhalation Device. Pharm Res 33, 922–931 (2016). https://doi.org/10.1007/s11095-015-1838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1838-4

KEY WORDS

Navigation