Skip to main content

Advertisement

Log in

Preclinical Pharmacokinetics Evaluation of Anti-heparin-binding EGF-like Growth Factor (HB-EGF) Monoclonal Antibody Using Cynomolgus Monkeys via 89Zr-immuno-PET Study and the Determination of Drug Concentrations in Serum and Cerebrospinal Fluid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and is an important therapeutic target in some types of human cancers. KHK2866 is a humanized anti-HB-EGF monoclonal antibody IgG that neutralizes HB-EGF activity by inhibiting the binding of HB-EGF to its receptors. The phase I study of KHK2866 was discontinued because of neuropsychiatric toxicity. In this study, the pharmacokinetics of KHK2866 was evaluated by 89Zr-immuno-PET study and the determination of drug concentrations in serum and cerebrospinal fluid using cynomolgus monkeys was performed in order to predict neurotoxicity in a reverse-translational manner.

Methods

KHK2866 was radiolabeled with 89Zr for preclinical evaluations in normal cynomolgus monkeys and its distribution was analyzed. Furthermore, as a separate study, KHK2866 concentrations in serum and cerebrospinal fluid were determined after administration of a single dose.

Results

PET studies with monkeys revealed 89Zr-KHK2866 accumulation in the liver, spleen and joints of multiple parts, but not in brain. In addition, the pharmacokinetic analyses in serum and CSF demonstrated a low penetration of KHK2866 into the brain.

Conclusions

These studies indicate the difficulty of prediction for neuropsychiatric toxicity of monoclonal antibodies in human by means of pharmacokinetic evaluations using cynomolgus monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

Bq:

Becquerel

CSF:

Cerebrospinal fluid

CT:

Computed tomography

CTAC:

CT-based attenuation correction

EGF:

Epidermal growth factor

ELISA:

Enzyme-linked immunosorbent assay

FWHM:

Full width half maximum

HB-EGF:

Heparin-binding EGF-like growth factor

HPLC:

High performance liquid chromatography

IACUC:

Institutional animal care and use committee

LLOQ:

Lower limit of quantification

MIP:

Maximum intensity projections

MTD:

Maximum tolerated dose

PET:

Positron emission tomography

PK:

Pharmacokinetics

QC:

Quality control

SUV:

Standard uptake value

TLC:

Thin-layer chromatography

VOI:

Volume of interest

References

  1. Higashiyama S, Iwabuki H, Morimoto C, Heida M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99:214–20.

    Article  CAS  PubMed  Google Scholar 

  2. Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T, et al. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun. 2008;365:555–61.

    Article  CAS  PubMed  Google Scholar 

  3. Miyamoto S, Iwamoto R, Furuya A, Takahashi K, Sasaki Y, Ando H, et al. A novel anti-human HB-EGF monoclonal antibody with multiple antitumor mechanisms against ovarian cancer cells. Clin Cancer Res. 2011;17:6733–41.

    Article  CAS  PubMed  Google Scholar 

  4. Sarantopolous J, Camacho L, Mita M, Cranmer L, Birrer M, Bristow P, Kaito H, Strout V. Phase I study of monotherapy with KHK2866, an anti-heparin-binding epidermal growth factor-like growth factor monoclonal antibody, in patients with advanced cancer. Target Oncol. In press.

  5. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.

    Article  PubMed  Google Scholar 

  6. Börjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–40.

    Article  PubMed  Google Scholar 

  7. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87:586–92.

    Article  CAS  PubMed  Google Scholar 

  8. Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to phase 1 clinical studies. MAbs. 2014;6(2):567–75.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–81.

    CAS  PubMed  Google Scholar 

  10. Kasai N, Yoshikawa Y, Enokizono J. Effect of antigen-dependent clearance on pharmacokinetics of anti-heparin-binding EGF-like growth factor (HB-EGF) monoclonal antibody. MAbs. 2014;6(5):1220–8.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733–44.

    Article  CAS  PubMed  Google Scholar 

  12. Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003;101(2):466–8.

    Article  CAS  PubMed  Google Scholar 

  13. Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood-nerve and blood–brain barriers. Proc Natl Acad Sci U S A. 1994;91:5705–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Petereit HF, Rubbert-Roth A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult Scler. 2009;15(2):189–92.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura Y, Handa K, Iwamoto R, Tsukamoto T, Takahasi M, Mekada E. Immunohistochemical distribution of CD9, heparin binding epidermal growth factor-like growth factor, and integrin alpha3beta1 in normal human tissues. J Histochem Cytochem. 2001;49:439–44.

    Article  CAS  PubMed  Google Scholar 

  16. Hayase Y, Higashiyama S, Sasahara M, Amano S, Nakagawa T, Taniguchi N, et al. Expression of heparin-binding epidermal growth factor-like growth factor in rat brain. Brain Res. 1998;784(1–2):163–78.

    Article  CAS  PubMed  Google Scholar 

  17. Abraham JA, Damm D, Bajardi A, Miller J, Klagsbrun M, Ezekowitz RA. Heparin-binding EGF-like growth factor: characterization of rat and mouse cDNA clones, protein domain conservation across species, and transcript expression in tissues. Biochem Biophys Res Commun. 1993;190(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  18. Mishima K, Higashiyama S, Nagashima Y, Miyagi Y, Tamura A, Kawahara N, et al. Regional distribution of heparin-binding epidermal growth factor-like growth factor mRNA and protein in adult rat forebrain. Neurosci Lett. 1996;213:153–6.

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa T, Sasahara M, Hayase Y, Haneda M, Yasuda H, Kikkawa R, et al. Neuronal and glial expression of heparin-binding EGF-like growth factor in central nervous system of prenatal and early postnatal rat. Brain Res Dev Brain Res. 1998;108:263–72.

    Article  CAS  PubMed  Google Scholar 

  20. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992;267(19):6205–12.

    CAS  PubMed  Google Scholar 

  21. Goishi K, Higashiyama S, Klagsbrun M, Nakano N, Umata T, Ishikawa M, et al. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell. 1995;6:967–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kasai N, Kobayashi K, Shioya S, Yoshikawa Y, Yotsumoto F, Miyamoto S, et al. Soluble heparin-binding EGF-like growth factor (HB-EGF) detected by newly developed immuno-PCR method is a clear-cut serological biomarker for ovarian cancer. Am J Transl Res. 2012;4:415–21.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Drs. T. Tawara, N. Mimura, A. Takami, Y Yoda, J Hosogi, K Fujita, H. Kaito, and TW. Poh for excellent support and helpful suggestion. This research was funded by Kyowa Hakko Kirin, Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kasai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of antigen-binding activities between cold Zr-KHK2866 and unlabeled KHK2866 by antigen-coated ELISA. The antigen-binding activity was compared by antigen-coated ELISA as described below briefly. Coated antigen; recombinant human HB-EGF (R&D Systems), analytes; cold Zr-KHK2866 or unlabeled KHK2866 (0.137-100 ng/ml), detection antibody; anti-human IgG (whole molecule)-peroxidase antibody produced in rabbit (Sigma), substrate; TMB (3,3′,5,5;-tetramethylbenzidine) chromogen solution (Life Technologies), microplate reader; Varioskan Flash (Thermo Scientific). OD450 nm; optical density at 450 nm. (JPEG 49 kb)

High resolution image (TIFF 20894 kb)

Fig. S2

Calibration curves of the electrochemiluminescence assay for the determination of KHK2866 and KM8047 concentrations in cynomolgus monkey serum (A) and CSF (B). Calibration curves were generated by 4-parameter regression of the natural logarithmic transformed nominal concentrations of the calibration standards (X axis), except for the 0 μg/ml sample, and the natural logarithmic transformed mean values of duplicate signal intensity (Y axis). (JPEG 175 kb)

High resolution image (TIFF 77199 kb)

Table S1

(DOCX 36 kb)

Table S2

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasai, N., Adachi, M. & Yamano, K. Preclinical Pharmacokinetics Evaluation of Anti-heparin-binding EGF-like Growth Factor (HB-EGF) Monoclonal Antibody Using Cynomolgus Monkeys via 89Zr-immuno-PET Study and the Determination of Drug Concentrations in Serum and Cerebrospinal Fluid. Pharm Res 33, 476–486 (2016). https://doi.org/10.1007/s11095-015-1803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1803-2

KEY WORDS

Navigation