Skip to main content
Log in

Unstirred Water Layers and the Kinetics of Organic Cation Transport

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Unstirred water layers (UWLs) present an unavoidable complication to the measurement of transport kinetics in cultured cells, and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1.

Methods

Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates.

Results

Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 μm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold.

Conclusions

Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the apparent affinity of multidrug transporters for substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary

DDI:

Drug-drug interaction

HEK-293:

Human embryonic kidney 293

hMATE1:

human Multidrug And Toxin Extruder 1

hOCT2:

human Organic Cation Transporter 2

Jmax :

Maximal rate of transport

Kt :

Michaelis constant

Ktapp :

Apparent Michaelis constant

MDCK:

Madin-Darby canine kidney

MPP:

1-Methyl-4-phenylpyridinium

NBD-MTMA:

N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium

TEA:

Tetraethylammonium

UWL:

Unstirred water layer

References

  1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  2. Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54:4548–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zolk O, Solbach TF, Konig J, Fromm MF. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmiedeberg’s Arch Pharmacol. 2009;379:337–48.

    Article  CAS  Google Scholar 

  4. Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human Multidrug And Toxin Extrusion proteins, MATE1 and MATE-2K. J Pharmacol Exp Ther. 2012;341:743–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Harper JN, Wright SH. Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am J Physiol Ren Physiol. 2012;304:F56–67.

    Article  Google Scholar 

  6. Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol. 2005;67:1067–77.

    Article  CAS  PubMed  Google Scholar 

  7. Bednarczyk D, Ekins S, Wikel JH, Wright SH. Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003;63:489–98.

    Article  CAS  PubMed  Google Scholar 

  8. Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human Organic Cation Transporter, OCT2. J Pharmacol Exp Ther. 2013;346:300–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Winne D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta. 1973;298:27–31.

    Article  CAS  PubMed  Google Scholar 

  10. Thomson AB, Dietschy JM. Derivation of the equations that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol. 1977;64:277–94.

    Article  CAS  PubMed  Google Scholar 

  11. Dietschy JM, Sallee VL, Wilson FA. Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology. 1971;61:932–4.

    CAS  PubMed  Google Scholar 

  12. Balakrishnan A, Hussainzada N, Gonzalez P, Bermejo M, Swaan PW, Polli JE. Bias in estimation of transporter kinetic parameters from overexpression systems: interplay of transporter expression level and substrate affinity. J Pharmacol Exp Ther. 2007;320:133–44.

    Article  CAS  PubMed  Google Scholar 

  13. Korjamo T, Heikkinen AT, Monkkonen J. Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci. 2009;98:4469–79.

    Article  CAS  PubMed  Google Scholar 

  14. Avdeef A, Nielsen PE, Tsinman O. PAMPA–a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci. 2004;22:365–74.

    CAS  PubMed  Google Scholar 

  15. Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NF. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci. 1995;84:1197–204.

    Article  CAS  PubMed  Google Scholar 

  16. Karlsson J, Artursson P. A method for the determination of cellular permeability coeffcients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm. 1991;71:55–64.

    Article  CAS  Google Scholar 

  17. Ruell JA, Tsinman KL, Avdeef A. PAMPA–a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pKa flux–optimized design (pOD-PAMPA). Eur J Pharm Sci. 2003;20:393–402.

  18. Aavula BR, Ali MA, Bednarczyk D, Wright SH, Mash EA. Synthesis and fluorescence of n, n, n -trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium iodide, a pH-insensitive reporter of organic cation transport. Synth Commun. 2006;36:701–5.

    Article  CAS  Google Scholar 

  19. Pelis RM, Dangprapai Y, Wunz TM, Wright SH. Inorganic mercury interacts with cysteine residues (C451 and C474) of hOCT2 to reduce its transport activity. Am J Physiol Ren Physiol. 2007;292:F1583–91.

    Article  CAS  Google Scholar 

  20. Zhang X, He X, Baker J, Tama F, Chang G, Wright SH. Twelve transmembrane helices form the functional core of mammalian MATE1 (Multidrug and Toxin Extruder 1) protein. J Biol Chem. 2012;287:27971–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem. 1994;269:23544–52.

    CAS  PubMed  Google Scholar 

  22. Schomig E, Lazar A, Grundemann D. Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency. Handb Exp Pharmacol. 2006;151–80.

  23. Pelis RM, Suhre WM, Wright SH. Functional influence of N-glycosylation in OCT2-mediated tetraethylammonium transport. Am J Physiol Ren Physiol. 2006;290:F1118–26.

    Article  CAS  Google Scholar 

  24. Barry PH, Diamond JM. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984;64:763–872.

    CAS  PubMed  Google Scholar 

  25. Zhang X, Shirahatti NV, Mahadevan D, Wright SH. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). J Biol Chem. 2005;280:34813–22.

    Article  CAS  PubMed  Google Scholar 

  26. Papp E, Csermely P. Chemical chaperones: mechanisms of action and potential use. Handb Exp Pharmacol. 2006;405–16.

  27. Stein WD. Channels, carriers, and pumps: an introduction to membrane transport. San Diego: Academic Press, Inc; 1990.

    Google Scholar 

  28. Dainty J. Water relations of plant cells. Adv Bot Res. 1963;1:279–326.

    Article  CAS  Google Scholar 

  29. Pedley TJ. Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q Rev Biophys. 1983;16:115–50.

    Article  CAS  PubMed  Google Scholar 

  30. Giacomini KM, Huang SM. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94:3–9.

    Article  CAS  PubMed  Google Scholar 

  31. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287:800–5.

    CAS  PubMed  Google Scholar 

  32. Shi X, Bai S, Ford AC, Burk RD, Jacquemin E, Hagenbuch B, et al. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem. 1995;270:25591–5.

    Article  CAS  PubMed  Google Scholar 

  33. Palermo DP, DeGraaf ME, Marotti KR, Rehberg E, Post LE. Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol. 1991;19:35–47.

    Article  CAS  PubMed  Google Scholar 

  34. Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002;61:853–60.

    Article  CAS  PubMed  Google Scholar 

  35. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340:393–403.

    Article  CAS  PubMed  Google Scholar 

  36. Muller F, Konig J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86:808–15.

    Article  PubMed  Google Scholar 

  37. Schäli C, Schild L, Overney J, Roch-Ramel F. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am J Physiol. 1983;245:F238–46.

    PubMed  Google Scholar 

  38. Takano M, Inui KI, Okano T, Saito H, Hori R. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Biochim Biophys Acta. 1984;773:113–24.

    Article  CAS  PubMed  Google Scholar 

  39. Wright SH, Wunz TM. Transport of tetraethylammonium by rabbit renal brush-border and basolateral membrane vesicles. Am J Physiol. 1987;253:F1040–50.

    CAS  PubMed  Google Scholar 

  40. Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.

    Article  PubMed  Google Scholar 

  41. Okuda M, Saito H, Urakami Y, Takano M, Inui KI. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun. 1996;224:500–7.

    Article  CAS  PubMed  Google Scholar 

  42. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005;102:17923–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lazaruk KDA, Wright SH. MPP+ is transported by the TEA+-H+ exchanger of renal brush-border membrane vesicles. Am J Physiol. 1990;258:F597–605.

    CAS  PubMed  Google Scholar 

  44. Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2011;201:105–67.

    Article  CAS  PubMed  Google Scholar 

  45. U.S. Food, Drug A. Guidance for industry: drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. In: Huangand SM, Zhang L, editors. Vol. Draft Guidance 2012, pp. 1–79

  46. Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, et al. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem. 2011;286:37874–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Brast S, Grabner A, Sucic S, Sitte HH, Hermann E, Pavenstadt H, et al. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 2011;26:976–86.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, Kidney-Specific Multidrug and Toxin Extrusion 2. J Am Soc Nephrol. 2006;17:2127–35.

    Article  CAS  PubMed  Google Scholar 

  49. Wright SH, Wunz TM. Mechanism of cis- and trans- substrate interactions at the tetraethylammonium/H+ exchanger of rabbit renal brush-border membrane vesicles. J Biol Chem. 1988;263:19494–7.

    CAS  PubMed  Google Scholar 

  50. Umehara KI, Iwatsubo T, Noguchi K, Kamimura H. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: insight into the development of drug candidates. Xenobiotica. 2007;37:618–34.

    Article  CAS  PubMed  Google Scholar 

  51. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 Predominantly Expressed in the Human Kidney. J Am Soc Nephrol. 2002;13:1703–10.

    Article  CAS  PubMed  Google Scholar 

  52. Pelis RM, Dangprapai Y, Cheng Y, Zhang X, Terpstra J, Wright SH. Functional significance of conserved cysteines in the human organic cation transporter 2. Am J Physiol Ren Physiol. 2012;303:F313–20.

    Article  CAS  Google Scholar 

  53. Kikuchi R, Lao Y, Bow DA, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102:4426–32.

    Article  CAS  PubMed  Google Scholar 

  54. Gründemann D, Hahne C, Berkels R, Schomig E. Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther. 2003;304:810–7.

    Article  PubMed  Google Scholar 

  55. Kimura N, Okuda M, Inui K. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res. 2005;22:255–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:90–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bentz J, O’Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, et al. Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41:1347–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

This work was supported in part by NIH grants 5R01DK058251, 1R01DK080801, 5P30ES006694, and 5T32HL07249. The authors extend their thanks to Dr. William H. Dantzler, University of Arizona, and Dr. Ryan M. Pelis, Dalhousie University, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibayama, T., Morales, M., Zhang, X. et al. Unstirred Water Layers and the Kinetics of Organic Cation Transport. Pharm Res 32, 2937–2949 (2015). https://doi.org/10.1007/s11095-015-1675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1675-5

KEY WORDS

Navigation