Skip to main content
Log in

A Novel Approach for Analyzing the Dissolution Mechanism of Solid Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To analyze the dissolution mechanism of solid dispersions of poorly water-soluble active pharmaceutical ingredients (APIs), to predict the dissolution profiles of the APIs and to find appropriate ways to improve their dissolution rate.

Methods

The dissolution profiles of indomethacin and naproxen from solid dispersions in PVP K25 were measured in vitro using a rotating-disk system (USP II). A chemical-potential-gradient model combined with the thermodynamic model PC-SAFT was developed to investigate the dissolution mechanism of indomethacin and naproxen from their solid dispersions at different conditions and to predict the dissolution profiles of these APIs.

Results

The results show that the dissolution of the investigated solid dispersions is controlled by dissolution of both, API and PVP K25 as they codissolve according to the initial API loading. Moreover, the dissolution of indomethacin and naproxen was improved by decreasing the API loading in polymer (leading to amorphous solid dispersions) and increasing stirring speed, temperature and pH of the dissolution medium. The dissolution of indomethacin and naproxen from their amorphous solid dispersions is mainly controlled by the surface reaction, which implies that indomethacin and naproxen dissolution can be effectively improved by formulation design and by improving their solvation performance.

Conclusions

The chemical-potential-gradient model combined with PC-SAFT can be used to analyze the dissolution mechanism of solid dispersions and to describe and predict the dissolution profiles of API as function of stirring speed, temperature and pH value of the medium. This work helps to find appropriate ways to improve the dissolution rate of poorly-soluble APIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Activity (−)

A :

Surface area (m2)

A f :

Fraction of the area of the interface for the transport of molecules from the solution (−)

c :

Concentration mol/m3

Δc SL p,0API :

Difference in solid and liquid heat capacities of the API (J/(mol K))

Δh SL0API :

Heat of fusion of pure API (kJ/mol)

J :

Dissolution rate (mol/(m2 s))

k B :

Boltzmann’s constant 1.38065*10−23 (J/K)

k d :

Diffusion rate constant (mol/(m2 s))

k e :

Equilibrium-exchange rate between the solid and liquid phase (mol/(m2 s))

k ij :

Binary interaction parameter (−)

k S :

Surface reaction rate constant (mol/(m2 s))

k t :

Total rate constant of dissolution (mol/(m2 s))

m seg :

Segment number (−)

n exp :

Number of experimental data points (−)

T SL0API :

Melting temperature of API (K)

V :

Volume (m3)

w :

API loading (−)

w :

Axial fluid speed (m/s)

x :

Concentration or solubility in mole fraction (−)

a :

Helmholtz energy (J)

A :

Ionized form of monoprotic weak-acidic API

API:

Active pharmaceutical ingredient

ARD:

Average relative deviation

calc:

Calculated results

exp:

Experimental data

H3O+ :

Hydronium ion

HA:

Monoprotic weak-acidic API

IND:

Indomethacin

Ka :

Acid dissociation equilibrium constant

LLE:

Liquid-liquid equilibrium

M :

Average molar mass (g/mol)

N:

Total number of particles (−)

NAP:

Naproxen

N assoc :

Number of association sites (−)

PVP:

Polyvinylpyrrolidone

R:

Universal ideal gas constant (J/K/mol)

SLE:

Solid–liquid equilibrium

t:

Time (s)

T:

Temperature (Kelvin) or (°C)

Z:

Compressibility factor (−)

α :

Proportionality constant (−)

β API :

Degree of API crystallinity (−)

γ :

Activity coefficient (−)

θ :

Ratio of the dissolution rate of API to that of polymer

\( {\varepsilon}_{hb}^{A_i{B}_i}/{k}_B \) :

Association-energy parameter (K)

φ :

Fugacity coefficient (−)

∅:

Constant fraction of molecules that strike the solid surface (−)

ω :

Stirring speed (round/s)

ν :

Kinematic viscosity of the solution (m2/s)

δ:

Thickness of diffusion layer (m)

u/k B :

Dispersion-energy parameter (K)

\( {\kappa}_{hb}^{A_i{B}_i} \) :

Association-volume parameter (−)

µ :

Chemical potential (J/mol)

ν c :

Enhancement of equilibrium-exchange rate resulting from convection (mol/(m2 s))

ν r :

Collision frequency (mol/(m2 s))

ρ :

Density (mol/Å3) or (mol/L)

σ :

Segment diameter (Å)

API:

Active pharmaceutical ingredient

i j :

Component indexes

polymer:

Polymer

0:

Pure substance

A i B i :

Association sites A and B of molecule i

assoc:

Association

B:

Bulk phase

dipole:

Dipole-dipole interactions

disp:

Dispersion

elec:

Ionic interactions

hc:

Hard chain

I:

Solid–liquid interface

L:

Liquid phase

L1:

Amorphous API-rich phase

L2:

Water-rich phase

res:

Residual

S:

Solid phase

SD:

Solid dispersion

seg:

Segment

SL:

Solid–liquid

References

  1. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  CAS  PubMed  Google Scholar 

  2. Sun DD, Ju TC, Lee PI. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Eur J Pharm Biopharm. 2012;81(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  3. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  4. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  5. Sivert A, Bérard V, Andrès C. New binary solid dispersion of indomethacin with surfactant polymer: from physical characterization to in vitro dissolution enhancement. J Pharm Sci. 2010;99(3):1399–413.

    Article  CAS  PubMed  Google Scholar 

  6. Mura P, Faucci MT, Manderioli A, Bramanti G, Parrini P. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev Ind Pharm. 1999;25(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  7. Kogermann K, Penkina A, Predbannikova K, Jeeger K, Veski P, Rantanen J, et al. Dissolution testing of amorphous solid dispersions. Int J Pharm. 2013;444(1–2):40–6.

    Article  CAS  PubMed  Google Scholar 

  8. Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GG, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31.

    Article  CAS  PubMed  Google Scholar 

  9. Arthur AN, Willis RW. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  10. Lu AT, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10(9):1308–14.

    Article  CAS  PubMed  Google Scholar 

  11. Vudathala GK, Rogers JA. Dissolution of fludrocortisone from phospholipid coprecipitates. J Pharm Sci. 1992;81(3):282–6.

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50(10):874–5.

    Article  CAS  PubMed  Google Scholar 

  13. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(8):923–31.

    Article  CAS  Google Scholar 

  15. de Almeida LP, Simöes S, Brito P, Portugal A, Figueiredo M. Modeling dissolution of sparingly soluble multisized powders. J Pharm Sci. 1997;86(6):726–32.

    Article  PubMed  Google Scholar 

  16. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  17. Baker RW, Lonsdale HK. Controlled release: mechanisms and rates. In: Tanquary AC, Lacey RE, editors. Controlled release of biologically active agents. Advances in experimental medicine and biology. New York: Plenum; 1974. p. 15–72.

    Chapter  Google Scholar 

  18. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  19. Siepmann J, Kranz H, Bodmeier R, Peppas NA. HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res. 1999;16(11):1748–56.

    Article  CAS  PubMed  Google Scholar 

  20. Langham ZA, Booth J, Hughes LP, Reynolds GK, Wren SA. Mechanistic insights into the dissolution of spray-dried amorphous solid dispersions. J Pharm Sci. 2012;101(8):2798–810.

    Article  CAS  PubMed  Google Scholar 

  21. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  22. Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  23. Lu XH, Ji YH, Liu HL. Non–equilibrium thermodynamics analysis and its application in interfacial mass transfer. Sci China Chem. 2011;54(10):1659–66.

    Article  CAS  Google Scholar 

  24. Liu C, Ji Y, Shao Q, Feng X, Lu X. Thermodynamic analysis for synthesis of advanced materials. In: Lu XH, Hu Y, editors. Molecular thermodynamics of complex systems, Struct Bond. Berlin: Springer–Verlag; 2009. p. 193–270.

    Chapter  Google Scholar 

  25. Ji YH, Ji XY, Liu C, Feng X, Lu XH. Modelling of mass transfer coupling with crystallization kinetics in microscale. Chem Eng Sci. 2010;65:2649–55.

    Article  CAS  Google Scholar 

  26. Ruether F, Sadowski G. Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. J Pharm Sci. 2009;98(11):4205–15.

  27. Cassens J, Prudic A, Ruether F, Sadowski G. Solubility of pharmaceuticals and their salts as a function of pH. Ind Eng Chem Res. 2013;52(7):2721–31.

  28. Fuchs D, Fischer J, Tumakaka F, Sadowski G. Solubility of amino acids: influence of the pH value and the addition of alcoholic cosolvents on aqueous solubility. Ind Eng Chem Res. 2006;45(19):6578–84.

  29. Daldrup JBG, Held C, Ruether F, Schembecker G, Sadowski G. Measurement and modeling solubility of aqueous multisolute amino–acid solutions. Ind Eng Chem Res. 2010;49(3):1395–401.

    Article  Google Scholar 

  30. Gross J, Sadowski G. Modeling polymer systems using the perturbed–chain statistical associating fluid theory equation of state. Ind Eng Chem Res. 2002;41(5):1084–93.

    Article  CAS  Google Scholar 

  31. Tumakaka F, Gross J, Sadowski G. Modeling of polymer phase equilibria using perturbed–chain SAFT. Fluid Phase Equilib. 2002;194–197:541–51.

    Article  Google Scholar 

  32. Gross J, Spuhl O, Tumakaka F, Sadowski G. Modeling copolymer systems using the perturbed–chain SAFT equation of state. Ind Eng Chem Res. 2003;42(6):1266–74.

    Article  CAS  Google Scholar 

  33. Prudic A, Ji YH, Sadowski G. Thermodynamic phase behavior of API/polymer solid dispersions. Mol Pharm. 2014;11(7):2294–304.

    Article  CAS  PubMed  Google Scholar 

  34. Prudic A, Kleetz T, Korf M, Ji YH, Sadowski G. Influence of copolymer composition on the phase behavior of solid dispersions. Mol Pharm. 2014;11(11):4189–98.

    Article  CAS  PubMed  Google Scholar 

  35. Prudic A, Lesniak AK, Ji YH, Sadowski G. Thermodynamic phase behaviour of indomethacin/PLGA formulations. Eur J Pharm Biopharm. 2015; in press, doi:10.1016/j.ejpb.2015.01.029.

  36. Held C, Cameretti LF, Sadowski G. Modeling aqueous electrolyte solutions: part 1. Fully dissociated electrolytes. Fluid Phase Equilib. 2008;270(1–2):87–96.

    Article  CAS  Google Scholar 

  37. Held C, Sadowski G. Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes. Fluid Phase Equilib. 2009;279(2):141–8.

    Article  CAS  Google Scholar 

  38. Reschke T, Naeem S, Sadowski G. Osmotic coefficients of aqueous weak electrolyte solutions: influence of dissociation on data reduction and modeling. J Phys Chem B. 2012;116(25):7479–91.

    Article  CAS  PubMed  Google Scholar 

  39. Tumakaka F, Sadowski G. Application of the perturbed–chain SAFT equation of state to polar systems. Fluid Phase Equilib. 2004;217(2):233–9.

    Article  CAS  Google Scholar 

  40. Kleiner M, Gross J. An equation of state contribution for polar components: polarizable dipoles. AIChE J. 2006;52(5):1951–61.

    Article  CAS  Google Scholar 

  41. Kiesow K, Tumakaka F, Sadowski G. Experimental investigation and prediction of oiling out during crystallization process. J Cryst Growth. 2008;310(18):4163–8.

    Article  CAS  Google Scholar 

  42. Gross J, Sadowski G. Perturbed–chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244–60.

    Article  CAS  Google Scholar 

  43. Liu R. Water-insoluble drug formulation. 2nd edition. CRC Press; 2008.

  44. Dokoumetzidis A, Papadopoulou V, Valsami G, Macheras P. Development of a reaction-limited model of dissolution: application to official dissolution tests experiments. Int J Pharm. 2008;355:114–25.

    Article  CAS  PubMed  Google Scholar 

  45. Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I Theoretical development. J Chem Phys. 1982;76(11):5599–605.

    Article  CAS  Google Scholar 

  46. Ward CA, Rizk M, Tucker AS. Statistical rate theory of interfacial transport. II. Rate of isothermal bubble evolution in a liquid–gas solution. J Chem Phys. 1982;76(11):5606–14.

    Article  CAS  Google Scholar 

  47. Dejmek M, Ward CA. A statistical rate theory study of interface concentration during crystal growth or dissolution. J Chem Phys. 1998;108(20):8698–704.

    Article  CAS  Google Scholar 

  48. Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. Upper Saddle River: Prentice Hall PTR; 1999.

    Google Scholar 

  49. Tirkkonen S, Urtti A, Paronen P. Buffer controlled release of indomethacin from ethylcellulose microcapsules. Int J Pharm. 1995;124(2):219–29.

    Article  CAS  Google Scholar 

  50. Henderson LJ. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol. 1908;21:173–9.

    CAS  Google Scholar 

  51. Henderson LJ. The theory of neutrality regulation in the animal organism. Am J Physiol. 1908;21:427–48.

    Google Scholar 

  52. Hansen NT, Kouskoumvekaki I, Jørgensen FS, Brunak S, Jónsdóttir SÓ. Prediction of pH-dependent aqueous solubility of druglike molecules. J Chem Inf Model. 2006;46(6):2601–9.

    Article  CAS  PubMed  Google Scholar 

  53. Paus R, Ji YH, Braak F, Sadowski G. Dissolution of crystalline pharmaceuticals: experimental investigation and thermodynamic modeling. Ind Eng Chem Res. 2015;54(2):731–42.

    Article  CAS  Google Scholar 

  54. Gross J, Sadowski G. Application of the perturbed–chain SAFT equation of state to associating systems. Ind Eng Chem Res. 2002;41(22):5510–5.

    Article  CAS  Google Scholar 

  55. Wolbach JP, Sandler SI. Using molecular orbital calculations to describe the phase behavior of cross–associating mixtures. Ind Eng Chem Res. 1998;37(8):2917–28.

    Article  CAS  Google Scholar 

  56. DIN ISO 13528. Statistical methods for use in proficiency testing by interlaboratory comparisons (ISO 13528:2005). DIN Deutsches Institut für Normung e.V.; 2009. p. 98–100.

  57. Legendre B, Feutelais Y. Polymorphic and thermodynamic study of indomethacin. J Therm Anal Calorim. 2004;76:255–64.

    Article  CAS  Google Scholar 

  58. Held C, Reschke T, Mohammad S, Luza A, Sadowski G. ePC–SAFT revised. Chem Eng Res Des. 2014;92(12):2884–97.

    Article  CAS  Google Scholar 

  59. Kestin J, Sokolov M, Wakeham WA. Viscosity of liquid water in the range −8°C to 150°C. J Phys Chem Ref Data. 1978;7(3):941–8.

    Article  CAS  Google Scholar 

  60. Mehta KA, Kislalioglu MS, Phuapradit W, Malick AW, Shah NH. Effect of formulation and process variables on matrix erosion and drug release from a multiunit erosion matrix of a poorly soluble drug. Pharm Technol. 2002;2:26–34.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to acknowledge the financial support from the Alexander von Humboldt Foundation (Yuanhui Ji) as well as that from the CLIB Graduate Cluster Industrial Biotechnology (Anke Prudic). They would like to thank Monika Meuris for assisting with the PXRD and SEM experiments. They would also like to thank the reviewers for their helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhui Ji.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

The absorbance-wavelength curves of the aqueous solutions of indomethacin at 30 mg/L and PVP K25 at 125 mg/L. (GIF 13 kb)

High resolution image (TIFF 17440 kb)

Fig. S2

The absorbance-wavelength curves of the aqueous solutions of naproxen at 10 mg/L and PVP K25 at 125 mg/L. (GIF 12 kb)

High resolution image (TIFF 17440 kb)

Fig. S3

The total rate constant kt for the dissolution of indomethacin dependent on the stirring speed ω (in rpm). Gray symbols represent the model results by the chemical-potential-gradient model. Full line represents a linear fitting between kt and stirring speed ω with a function of kt/ (mol/(m2 s)) = 1.441 ∙ 10-9∙ ω/(rpm) +3.66968 ∙ 10-7. (GIF 11 kb)

High resolution image (TIFF 17440 kb)

Fig. S4

The total rate constant kt for the dissolution of indomethacin dependent on the temperature (in K). Gray symbols represent the model results by the chemical-potential-gradient model. Full line represents a linear fitting between kt and temperature with a function of kt/ (mol/(m2 s)) = 6.178 ∙ 10-9 ∙ T/(K) -1.477135 ∙ 10-6. (GIF 11 kb)

High resolution image (TIFF 17440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Paus, R., Prudic, A. et al. A Novel Approach for Analyzing the Dissolution Mechanism of Solid Dispersions. Pharm Res 32, 2559–2578 (2015). https://doi.org/10.1007/s11095-015-1644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1644-z

KEY WORDS

Navigation