Skip to main content
Log in

Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A key step of delivering extracellular agents to its intracellular target is to escape from endosomal/lysosomal compartments, while minimizing the release of digestive enzymes that may compromise cellular functions. In this study, we examined the intracellular distribution of both fluorecent cargoes and enzymes by a particle delivery platform made from the controlled blending of poly(lactic-co-glycolic acid) (PLGA) and a random pH-sensitive copolymer.

Methods

We utilized both microscopic and biochemical methods to semi-quantitatively assess how the composition of blend particles affects the level of endosomal escape of cargos of various sizes and enzymes into the cytosolic space.

Results

We demonstrated that these polymeric particles enabled the controlled delivery of cargos into the cytosolic space that was more dependent on the cargo size and less on the composition of blend particles. Blend particles did not induce the rupture of endosomal/lysosomal compartments and released less than 20% of endosomal/lysosomal enzymes.

Conclusions

This study provides insight into understanding the efficacy and safety of a delivery system for intracellular delivery of biologics and drugs. Blend particles offer a potential platform to target intracellular compartments while potentially minimizing cellular toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PLGA:

Poly(lactic-co-glycolic acid)

PAA:

2-Propylacrylic acid

BMA:

Butyl methacrylate

DMAEMA:

2-(dimethylamino)ethyl methacrylate

AIBN:

2,2′-azobis(2-methylpropionitrile)

DCM:

Dichloromethane

PVA:

Polyvinyl alcohol

PS:

Polystyrene

PS-NH2:

Amine-end polystyrene particles

PS-COOH:

Carboxylate-modified polystyrene particles

DPBS:

Dulbecco’s phosphate buffered saline

AO:

Acridine orange

DAPI:

4′,6-diamidino-2-phenylindole

FITC:

Fluorescein isothiocyanate

NAG:

N-acetyl-β-D-glucosaminidase

NMR:

Nuclear magnetic resonance spectroscopy

GPC:

Gel permeation chromatography

DLS:

Dynamic light scattering

SEM:

Scanning electron microscope

MW:

Molecular weight

PDI:

Polydispersity index

LAMP-2:

Lysosomal associated membrane protein-2

REFERENCES

  1. Bonner DK, Leung C, Chen-Liang J, Chingozha L, Langer R, Hammond PT. Intracellular trafficking of Polyamidoamine-Poly(ethylene glycol) block copolymers in DNA delivery. Bioconjug Chem. 2011;22(8):1519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, et al. pH-Responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules. 2010;11(11):2904–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grayson ACR, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res. 2006;23(8):1868–76.

    Article  PubMed  Google Scholar 

  4. Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, et al. Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv Funct Mater. 2007;17(3):355–62.

    Article  CAS  Google Scholar 

  5. Fernandex-Carneado J, van Gool M, Martos V, Castel S, Prados P, de Mendoza J, et al. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc. 2005;127(3):869–74.

    Article  Google Scholar 

  6. Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen JZ, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater. 2004;3(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  7. Golzio M, Mazzolini L, Moller P, Rols MP, Teissie J. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther. 2005;12(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  8. Jewell CM, Jung JM, Atukorale PU, Carney RP, Stellacci F, Irvine DJ. Oligonucleotide delivery by cell-penetrating “striped” nanoparticles. Angew Chem Int Edit. 2011;50(51):12312–5.

    Article  CAS  Google Scholar 

  9. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YT, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  11. Berg T, Gjoen T, Bakke O. Physiological functions of endosomal proteolysis. Biochem J. 1995;307:313–26.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guicciardi M, Leist M, Gores G. Lysosomes in cell death. Oncog. 2004;23(16):2881–90.

    Article  CAS  Google Scholar 

  13. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-Responsive core-shell nanoparticles. Nano Lett. 2007;7(10):3056–64.

    Article  CAS  PubMed  Google Scholar 

  14. Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao XL, Narimatsu S, et al. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1 beta production, ROS production and endosomal rupture. Biomaterials. 2010;31(26):6833–42.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng ZL, Chen AK, Lee HY, Tsourkas A. Examination of folate-targeted liposomes with encapsulated Poly(2-propylacrylic acid) as a pH-Responsive nanoplatform for cytosolic drug delivery. Small. 2010;6(13):1398–401.

    Article  CAS  PubMed  Google Scholar 

  16. Tran KK, Zhan X, Shen H. Polymer blend particles with Defi ned compositions for targeting antigen to both class I and II antigen presentation pathways. Adv Healthc Mater. 2014;3(5):690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrito MTD. Poly(2-ethylacrylic acid). Macromol Synth. 1992;11:59–62.

    Google Scholar 

  18. Takeda N, Nakamura E, Yokoyama M, Okano T. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Control Release. 2004;95(2):343–55.

    Article  CAS  PubMed  Google Scholar 

  19. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3(6):965–76.

    Article  CAS  PubMed  Google Scholar 

  20. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001;153(5):999–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grainger SJE-S MEH. Stimuli-Sensitive Particles for Drug Delivery. Biologically-Responsive Hybrid Biomaterials: Singapore: World Scientific Publishing 2010.

  22. van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NME, van Steenbergen MJ, Hennink WE. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug Chem. 1999;10(4):589–97.

    Article  PubMed  Google Scholar 

  23. Convertine AJ, Benoit DSW, Duvall CL, Hoffman AS, Stayton PS. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release. 2009;133(3):221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurisawa M, Yokoyama M, Okano T. Transfection efficiency increases by incorporating hydrophobic monomer units into polymeric gene carriers. J Control Release. 2000;68(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2008;2(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  26. Palmgren MG. Acridine - orange as a probe for measuring pH gradients across membranes - mechanism and limitations. Anal Biochem. 1991;192(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  27. Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin YL, Jiang GH, Birrell LK, El-Sayed MEH. Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials. 2010;31(27):7150–66.

    Article  CAS  PubMed  Google Scholar 

  29. Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19(12):1173–6.

    Article  CAS  PubMed  Google Scholar 

  30. Lackey CA, Press OW, Hoffman AS, Stayton PS. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug Chem. 2002;13(5):996–1001.

    Article  CAS  PubMed  Google Scholar 

  31. Berthiaume EP, Medina C, Swanson JA. Molecular size - fractionation during endocytosis in macrophages. J Cell Biol. 1995;129(4):989–98.

    Article  CAS  PubMed  Google Scholar 

  32. Dunn WA, Hubbard AL, Aronson NN. Low-temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of Asialofetuin-I-125 by the Perfused-Rat-Liver. J Biol Chem. 1980;255(12):5971–8.

    CAS  PubMed  Google Scholar 

  33. Liu JM, Xiao NQ, DeFranco DB. Use of digitonin-permeabilized cells in studies of steroid receptor subnuclear trafficking. Methods. 1999;19(3):403–9.

    Article  CAS  PubMed  Google Scholar 

  34. Korn ED. Cell membranes - Structure and synthesis. Annu Rev Biochem. 1969;38:263.

    Article  CAS  PubMed  Google Scholar 

  35. Schutt F, Bergmann M, Holz FG, Kopitz J. Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp. 2002;240(12):983–8.

    Article  Google Scholar 

  36. Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997;138(1):131–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johansson A-C, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15(5):527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tran K. Engineering Immunity Through the Rational Design of Vaccines. In.Department of Chemical Engineering: University of Washington; 2011.

  39. Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS. Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials. 2012;33(7):2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Behr JP. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia. 1997;51(1–2):34–6.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors want to thank the Cell Analysis Facility in the Department of Immunology, the Keck Microscopy Facility, and the NanoTech User Facility (NTUF) in University of Washington. This study was funded by (AI088597) from the National Institutes of Health (NIH) and the NSF CAREER Award to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Tran, K.K., Wang, L. et al. Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles. Pharm Res 32, 2280–2291 (2015). https://doi.org/10.1007/s11095-015-1619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1619-0

KEY WORDS

Navigation