Skip to main content

Advertisement

Log in

Controlled Electrostatic Self-Assembly of Ibuprofen-Cationic Dextran Nanoconjugates Prepared by low Energy Green Process – a Novel Delivery Tool for Poorly Soluble Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The direct effect of electrostatic interaction between ibuprofen and cationic dextran on the system-specific physicochemical parameters and intrinsic dissolution characteristics of ibuprofen was evaluated in order to develop drug-polymer nanoconjugate as a delivery strategy for poorly soluble drugs.

Methods

Amorphous ibuprofen-DEAE dextran (Ddex) nanoconjugate was prepared using a low energy, controlled amphiphile-polyelectrolyte electrostatic self-assembly technique optimized by ibuprofen critical solubility and Ddex charge screening. Physicochemical characteristics of the nanoconjugates were evaluated using FTIR, DSC, TGA, NMR and SEM relative to pure ibuprofen. The in vitro release profiles and mechanism of ibuprofen release were determined using mathematical models including zero and first order kinetics; Higuchi; Hixson-Crowell and Korsmeyer-Peppas.

Results

Electrostatic interaction between ibuprofen and Ddex was confirmed with FT-IR, 1H NMR and 13C NMR spectroscopy. The broad and diffused DSC peaks of the nanoconjugate as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. Low concentrations of Ddex up to 1.0 × 10−6 g/dm3 enhanced dissolution of ibuprofen to a maximum of 81.32% beyond which retardation occurred steadily. Multiple release mechanisms including diffusion; discrete drug dissolution; anomalous transport and super case II transport were noted.

Conclusions

Controlled assembly of ibuprofen and Ddex produced a novel formulation with potential extended drug release dictated by Ddex concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CAPESA:

Controlled amphiphile-polyelectrolyte electrostatic assembly

CE:

Conjugation efficiency

Ddex:

Diethyaminoethyl Dextran

DE:

Dissolution efficiency

DSC:

Differential scanning calorimetry

FT-IF:

Fourier Transform Infra-Red spectroscopy

Ibu:

Ibuprofen

MANOVA:

Multivariate analysis of variance

MDR:

Mean dissolution rate

MDT:

Mean dissolution time

NMR:

Nuclear Magnetic Resonance

SEM:

Scanning Electron Microscopy

TGA:

Thermal Gravimetric Analysis

REFERENCES

  1. Dollery C. Therapeutic drugs. 2nd ed. UK: Churchill Livingstone Press; 1999. p. 11–3.

    Google Scholar 

  2. Krupa A, Majda D, Jachowicz J, Mozgawa W. Solid-state interaction of ibuprofen and neusilin US2. Thermochim Acta. 2010;509:12–7.

    Article  CAS  Google Scholar 

  3. DRUGBANK. Ibuprofen. APRD 00372. 2013 (Available from: http://www.drugbank.ca/drugs/DB01050#properties). Accessed 15 Jan 2014.

  4. Nokhodchi A, Amire O, Jelvehgari M. Physico-mechanical and dissolution behaviours of ibuprofen crystals crystallized in the presence of various additives. DARU. 2010;18(2):74–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Abioye A, Kola-Mustapha A, Ruparelia K. Impact of insitu granulation and temperature quenching on crystal habit and micromeritic properties of ibuprofen-cationic dextran conjugate crystanules. Int J Pharm. 2014;462(1–2):83–102.

    Article  CAS  PubMed  Google Scholar 

  6. Abioye A, Kola-Mustapha A, Chi GT, Iliya S. Quantification of in situ granulation-induced changes in pre-compression, solubility, dose distribution and intrinsic in vitro release characteristics of ibuprofen-cationic dextran conjugate crystanules. Int J Pharm. 2014;471(1–2):453–77.

    Article  CAS  PubMed  Google Scholar 

  7. Ogaji IJ, Hoag SW. Effect of grewia gum as a suspending agent on ibuprofen paediatric formulation. AAPS PharmSciTech. 2011;12(2):507–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nada HA, Al-Saidan MS, Mueller WB. Crystal modification for improving the physical and chemical properties of ibuprofen. Pharm Technol. 2005;29:90–101.

    CAS  Google Scholar 

  9. Walson PD, Mortensen ME. Pharmacokinetics of common analgesics, anti-inflammatory and antipyretics in children. Clinical Pharmacokinet. 1989;17:116.

    Article  CAS  Google Scholar 

  10. Rivera-Leyva JC, García-Flores M, Valladares-Méndez A, Orozco-Castellanos LM, Martínez-Alfaro M. Comparative studies on the dissolution profiles of oral ibuprofen suspension and commercial tablets using biopharmaceutical classification system criteria. Indian J Pharm Sci. 2012;74(4):312–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  12. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Euro J Pharm Biopharm. 2000;50:82–5.

    Article  Google Scholar 

  13. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly-water soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    Article  CAS  PubMed  Google Scholar 

  14. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci. 2003;100:6039–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Strobi GR. The physics of polymers: Concepts for understanding their structure and behaviour. Berlin: Springer; 2007.

    Google Scholar 

  16. Dhaneshwar SS, Kandpal M, Gairola N, Kadam SS. Dextran: a promising macromolecular drug carrier. Indian J Pharm Sci. 2006;68:705–14.

    Article  CAS  Google Scholar 

  17. Jiang B, Hu L, Gao C, Shen J. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm. 2005;304:220–30.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang B, Hu L, Gao C, Shen J. Crosslinked polysaccharide nanocapsules: preparation and drug release properties. Acta Biomater J. 2005;2:9–18.

    Article  Google Scholar 

  19. Chen A, Feng J, Wang S. Study of ibuprofen-loaded PVM/MA nanoparticles prepared with an SEDS process. J Control Release. 2013;172:e14–97.

    Google Scholar 

  20. Dian L, Yang Z, Feng LF, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54.

    PubMed Central  PubMed  Google Scholar 

  21. Pathak P, Meziani MJ, Desai T, Sun YP. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J Supercrit Fluids. 2005;37:279–86.

    Article  Google Scholar 

  22. Ye ZSE. The development and scale-up of biodegradable polymeric nanoparticles loaded with ibuprofen. Colloids Surf : Physicochem Eng Asp. 2013;422:75–80.

    Article  CAS  Google Scholar 

  23. Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220(1–2):77–83.

    Article  CAS  PubMed  Google Scholar 

  24. Hadgraft JVC. pH, pKa and dermal delivery. Int J Pharm. 2000;200:243–7.

    Article  CAS  PubMed  Google Scholar 

  25. Reddy S, Gudsoorkar VR. Solid dispersions of gliclazide. Indian Pharm. 2005;32:82–4.

    Google Scholar 

  26. Plakkot S, de Matas M, York P, Saunders M, Sulaiman B. Comminution of ibuprofen to produce nano-particles for rapid dissolution. Int J Pharm. 2011;415:307–14.

    Article  CAS  PubMed  Google Scholar 

  27. Arunkumar ND, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm. 2009;3(3):168–73.

    Article  Google Scholar 

  28. Khan IA, Anjum K, Ali MS, Din K. A comparative study of interaction of ibuprofen with biocompatible polymers. Colloids Surf B: Biointerfaces. 2011;88(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hornig S, Bunjes H, Heinze T. Preparation and characterization of nanoparticles based on dextran–drug conjugates. J Colloid Interf Sci. 2009;338:56–62.

    Article  CAS  Google Scholar 

  30. Kuntsche J, Westesen K, Drechsler M, Koch MJH, Bunjes H. Supercooled smectic nanoparticles: a potential novel carrier system for poorly water soluble drugs. Pharm Res. 2004;21(10):1834–43.

    Article  CAS  PubMed  Google Scholar 

  31. Galindo-Rodriguez SA, Puel F, Briancon S, Allemann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 2005;25(4–5):357–67.

    Article  CAS  PubMed  Google Scholar 

  32. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113–28.

    Article  CAS  PubMed  Google Scholar 

  33. Coates J. Interpretation of infrared spectra, A practical approach in: Encyclopedia of analytical chemistry. In: Meyers RA editor; 2000. p 10815–10837.

  34. Lambert JB, Shurvell HF, Lightner DA, Cooks RG. Organic structural spectroscopy. New Jersey: Prentice Hall Inc.; 1998.

    Google Scholar 

  35. Amato ME, Djedani F, Pappalardo GC, Perly B, Scarlata G. Molecular modeling of β-cyclodextrin complexes with nootropic drugs. J Pharm Sci. 1992;81:1157–61.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar DPS, Subrata C, Soumen R. Formulation and evaluation of solid lipid nanoparticles of A poorly water soluble model drug, ibuprofen. Int Res J Pharm. 2012;3(12):132–7.

    Google Scholar 

  37. Kokot Z, Zmidzińska H. Solubility and dissolution rate of ibuprofen in ionic and non-ionic micellar systems. Acta Pol Pharm Drug Res. 2001;58(2):117–20.

    CAS  Google Scholar 

  38. Costa P, Lobo JMS. Modelling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  39. Varelas CG, Dixon DG, Steiner C. Zero order release from biphasic polymer hydrogels. J Control Release. 1995;34:185–92.

    Article  CAS  Google Scholar 

  40. Desai SJ, Singh P, Simonelli AP, Higuchi WI. Investigation of factors influencing release of solid drug dispersed in inert matrices II. quantification of procedures. J Pharm Sci. 1966;55:1224–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Ketan Ruparelia and Mrs Rachel Armitage for technical and scientific assistance on NMR and SEM respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Olusegun Abioye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abioye, A.O., Kola-Mustapha, A. Controlled Electrostatic Self-Assembly of Ibuprofen-Cationic Dextran Nanoconjugates Prepared by low Energy Green Process – a Novel Delivery Tool for Poorly Soluble Drugs. Pharm Res 32, 2110–2131 (2015). https://doi.org/10.1007/s11095-014-1603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1603-0

KEY WORDS

Navigation