Skip to main content

Advertisement

Log in

In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop in-silico model for predicting percutaneous absorption and disposition kinetics of chemicals in skin layers so as to facilitate the design of transdermal drug delivery systems and skin care products, and risk assessment of occupational or consumer exposure.

Methods

A general-purpose computer model for simulating skin permeation, absorption and disposition kinetics in the stratum corneum, viable dermis and dermis has been developed. Equations have been proposed for determining the partition and diffusion properties of chemicals by considering molecular partition, binding and mobility in skin layers. In vitro skin penetration data of 12 chemicals was used to validate the model.

Results

The observed and simulated permeation and disposition in skin layers were compared for 12 tested chemicals. For most tested chemicals, the experimental and model results are in good agreement with the coefficient of determination >0.80 and relative root mean squared error <1.20. The disposition kinetic parameters of the maximum concentration and the area under the curve in the viable epidermis and dermis initially increased with hydrophobicity, but reached maxima and then decreased with further increase of hydrophobicity.

Conclusions

By considering skin physiological structure and composition, the partition and diffusion properties of chemicals in skin layers are determined. This allows in-silico simulation of percutaneous permeation, absorption and disposition kinetics of wide chemical space. The model produced results in good agreement with experimental data of 12 chemicals, suggesting a much improved framework to support transdermal delivery of drug and cosmetic actives as well as integrated risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polat BE, Deen WM, Langer R, Blankschtein D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis — insight into the observed synergism. J Control Release. 2012;158:250–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alexander A, Dwivedi S, Ajazuddin TK, Giri S, Saraf S, Saraf S, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164:26–40.

    Article  CAS  PubMed  Google Scholar 

  3. Patzelt A, Lademann J, Richter H, Darvin ME, Schanzer S, Thiede G, et al. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Skin Res Technol. 2012;18:364–9.

    Article  CAS  PubMed  Google Scholar 

  4. Knaak J, Dary C, Zhang X, Gerlach R, Tornero-Velez R, Chang D, et al. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology, vol. 219. New York: Springer; 2012. p. 1–114.

    Chapter  Google Scholar 

  5. Boonen J, Malysheva SV, Taevernier L, Diana Di Mavungu J, De Saeger S, De Spiegeleer B. Human skin penetration of selected model mycotoxins. Toxicology. 2012;301:21–32.

    Article  CAS  PubMed  Google Scholar 

  6. Louisse J, de Jong E, van de Sandt JJM, Blaauboer BJ, Woutersen RA, Piersma AH, et al. The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci. 2010;118:470–84.

    Article  CAS  PubMed  Google Scholar 

  7. MacKay C, Davies M, Summerfield V, Maxwell G. From pathways to people: applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX: Alternatives to Animal Experiments. 2013. doi: pii: S1868696X1301251X.

  8. Basketter D, Pease C, Kasting G, Kimber I, Casati S, Cronin M, et al. Skin sensitisation and epidermal disposition: the relevance of epidermal disposition for sensitisation hazard identification and risk assessment. The report and recommendations of ECVAM workshop 59. Altern Lab Anim. 2007;35:137–54.

    CAS  PubMed  Google Scholar 

  9. Pendlington RU, Minter HJ, Stupart L, MacKay C, Roper CS, Sanders DJ, et al. Development of a modified in vitro skin absorption method to study the epidermal/dermal disposition of a contact allergen in human skin. Cutan Ocul Toxicol. 2008;27:283–94.

    Article  CAS  PubMed  Google Scholar 

  10. Abrahamand MH, Martins F. Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci. 2004;93:1508–23.

    Article  Google Scholar 

  11. Moss GP, Dearden JC, Patel H, Cronin MTD. Quantitative structure-permeability relationships (qsprs) for percutaneous absorption. Toxicol in Vitro. 2002;16:299–317.

    Article  CAS  PubMed  Google Scholar 

  12. Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release. 2003;86:69–92.

    Article  CAS  PubMed  Google Scholar 

  13. Pottsand RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.

    Article  Google Scholar 

  14. Chen LJ, Lian GP, Han LJ. Use of “bricks and mortar” model to predict transdermal permeation: model development and initial validation. Ind Eng Chem Res. 2008;47:6465–72.

    Article  CAS  Google Scholar 

  15. Davies M, Pendlington RU, Page L, Roper CS, Sanders DJ, Bourner C, et al. Determining epidermal disposition kinetics for use in an integrated nonanimal approach to skin sensitization risk assessment. Toxicol Sci. 2011;119:308–18.

    Article  CAS  PubMed  Google Scholar 

  16. van der Merwe D, Brooks JD, Gehring R, Baynes RE, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model of organophosphate dermal absorption. Toxicol Sci. 2006;89:188–204.

    Article  PubMed  Google Scholar 

  17. Polak S, Ghobadi C, Mishra H, Ahamadi M, Patel N, Jamei M, et al. Prediction of concentration–time profile and its inter-individual variability following the dermal drug absorption. J Pharm Sci. 2012;101:2584–95.

    Article  CAS  PubMed  Google Scholar 

  18. McCarleyand KD, Bunge AL. Pharmacokinetic models of dermal absorption. J Pharm Sci. 2001;90:1699–719.

    Article  Google Scholar 

  19. Poet TS, Weitz KK, Gies RA, Edwards JA, Thrall KD, Corley RA, et al. PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans. Toxicol Sci. 2002;67:17–31.

    Article  CAS  PubMed  Google Scholar 

  20. Wang TF, Kasting GB, Nitsche JM. A multiphase microscopic diffusion model for stratum corneum permeability. I. Formulation, solution, and illustrative results for representative compounds. J Pharm Sci. 2006;95:620–48.

    Article  CAS  PubMed  Google Scholar 

  21. Anissimov YG, Jepps OG, Dancik Y, Roberts MS. Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Adv Drug Deliv Rev. 2013;65:169–90.

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev. 2013;65:295–305.

    Article  CAS  PubMed  Google Scholar 

  23. Dancik Y, Miller MA, Jaworska J, Kasting GB. Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev. 2013;65:221–36.

    Article  CAS  PubMed  Google Scholar 

  24. Fraschand HF, Barbero AM. Application of numerical methods for diffusion-based modeling of skin permeation. Adv Drug Deliv Rev. 2013;65:208–20.

    Article  Google Scholar 

  25. Gratieriand T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65:315–29.

    Article  Google Scholar 

  26. Hansen S, Lehr C-M, Schaefer UF. Improved input parameters for diffusion models of skin absorption. Adv Drug Deliv Rev. 2013;65:251–64.

    Article  CAS  PubMed  Google Scholar 

  27. Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier — towards a better understanding of dermal absorption. Adv Drug Deliv Rev. 2013;65:152–68.

    Article  CAS  PubMed  Google Scholar 

  28. Karadzovska D, Brooks JD, Monteiro-Riviere NA, Riviere JE. Predicting skin permeability from complex vehicles. Adv Drug Deliv Rev. 2013;65:265–77.

    Article  CAS  PubMed  Google Scholar 

  29. Naegel A, Heisig M, Wittum G. Detailed modeling of skin penetration—an overview. Adv Drug Deliv Rev. 2013;65:191–207.

    Article  CAS  PubMed  Google Scholar 

  30. Notmanand R, Anwar J. Breaching the skin barrier — insights from molecular simulation of model membranes. Adv Drug Deliv Rev. 2013;65:237–50.

    Article  Google Scholar 

  31. Rauma M, Boman A, Johanson G. Predicting the absorption of chemical vapours. Adv Drug Deliv Rev. 2013;65:306–14.

    Article  CAS  PubMed  Google Scholar 

  32. Selzer D, Abdel-Mottaleb MMA, Hahn T, Schaefer UF, Neumann D. Finite and infinite dosing: difficulties in measurements, evaluations and predictions. Adv Drug Deliv Rev. 2013;65:278–94.

    Article  CAS  PubMed  Google Scholar 

  33. Lian GP, Chen LJ, Han LJ. An evaluation of mathematical models for predicting skin permeability. J Pharm Sci. 2008;97:584–98.

    Article  CAS  PubMed  Google Scholar 

  34. Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, et al. Mathematical models of skin permeability: an overview. Int J Pharm. 2011;418:115–29.

    Article  CAS  PubMed  Google Scholar 

  35. Wang TF, Kasting GB, Nitsche JM. A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters and application to a large permeability database. J Pharm Sci. 2007;96:3024–51.

    Article  CAS  PubMed  Google Scholar 

  36. Anissimovand YG, Roberts MS. Modelling dermal drug distribution after topical application in human. Pharm Res Dordr. 2011;28:2119–29.

    Article  Google Scholar 

  37. Naegel A, Hansen S, Neumann D, Lehr CM, Schaefer UF, Wittum G, et al. In-silico model of skin penetration based on experimentally determined input parameters. Part II. Mathematical modelling of in-vitro diffusion experiments. Identification of critical input parameters. Eur J Pharm Biopharm. 2008;68:368–79.

    Article  CAS  PubMed  Google Scholar 

  38. Selzer D, Hahn T, Naegel A, Heisig M, Kostka KH, Lehr CM, et al. Finite dose skin mass balance including the lateral part: comparison between experiment, pharmacokinetic modeling and diffusion models. J Control Release. 2013;165:119–28.

    Article  CAS  PubMed  Google Scholar 

  39. Hansen S, Henning A, Naegel A, Heisig M, Wittum G, Neumann D, et al. In-silico model of skin penetration based on experimentally determined input parameters. Part I. Experimental determination of partition and diffusion coefficients. Eur J Pharm Biopharm. 2008;68:352–67.

    Article  CAS  PubMed  Google Scholar 

  40. Hansch C, Leo A, Hoekman D. Exploring QSAR: hydrophobic, electronic, and steric constants. Washington: American Chemical Society; 1995.

    Google Scholar 

  41. Debnath AK, Decompadre RLL, Debnath G, Shusterman AJ, Hansch C. Structure activity relationship of mutagenic aromatic and heteroaromatic nitro-compounds - correlation with molecular-orbital energies and hydrophobicity. J Med Chem. 1991;34:786–97.

    Article  CAS  PubMed  Google Scholar 

  42. Odland G, editor. Structure of the skin. Oxford: Oxford University Press; 1991.

    Google Scholar 

  43. Williams FM. In vitro studies—how good are they at replacing in vivo studies for measurement of skin absorption? Environ Toxicol Pharmacol. 2006;21:199–203.

    Article  CAS  PubMed  Google Scholar 

  44. Kretsos K, Miller M, Zamora-Estrada G, Kasting GB. Partitioning, diffusivity and clearance of skin permeants in mammalian dermis. Int J Pharm. 2008;346:64–79.

    Article  CAS  PubMed  Google Scholar 

  45. Abramovicand H, Klofutar C. The temperature dependence of dynamic viscosity for some vegetable oils. Acta Chim Slov. 1998;45:69–77.

    Google Scholar 

  46. Einstein A. Uber die von der molekular-kineticshen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen. Ann Phys. 1905;17:549–60.

    Article  CAS  Google Scholar 

  47. Nitsche JM, Wang TF, Kasting GB. A two-phase analysis of solute partitioning into the stratum corneum. J Pharm Sci. 2006;95:649–66.

    Article  CAS  PubMed  Google Scholar 

  48. Wang LM, Chen LJ, Lian GP, Han LJ. Determination of partition and binding properties of solutes to stratum corneum. Int J Pharm. 2010;398:114–22.

    Article  CAS  PubMed  Google Scholar 

  49. Chen LJ, Lian GP, Han LJ. Modeling transdermal permeation. Part I. Predicting skin permeability of both hydrophobic and hydrophilic solutes. AICHE J. 2010;56:1136–46.

    CAS  Google Scholar 

  50. Jacksonand GW, James DG. The permeability of fibrous porous media. Can J Chem Eng. 1986;64:362–74.

    Google Scholar 

  51. Kasting GB, Barai ND, Wang TF, Nitsche JM. Mobility of water in human stratum corneum. J Pharm Sci. 2003;92:2326–40.

    Article  CAS  PubMed  Google Scholar 

  52. Kasting GB, Miller MA, Nitsche JM. Absorption and evaporation of volatile compounds applied to skin. In: Waltersand KA, Roberts MS, editors. Dermatologic, cosmeceutic, and cosmetic development. Boca Raton: CRC Press; 2007. p. 385–99.

    Chapter  Google Scholar 

  53. Bungeand AL, Cleek RL. A new method for estimating dermal absorption from chemical exposure: 2 Effect of molecular weight and octanol-water partitioning. Pharm Res. 1995;12:88–95.

    Article  Google Scholar 

  54. Yamazakiand K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93:1480–94.

    Article  Google Scholar 

  55. Gong M, Zhang Y, Weschler CJ. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application. Indoor Air. 2014;24:292–306.

    Article  CAS  PubMed  Google Scholar 

  56. Frasch HF, Dotson GS, Bunge AL, Chen CP, Cherrie JW, Kasting GB, et al. Analysis of finite dose dermal absorption data: implications for dermal exposure assessment. J Expo Sci Environ Epidemiol. 2014;24:65–73.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Magnusson BM, Cross SE, Winckle G, Roberts MS. Percutaneous absorption of steroids: determination of in vitro permeability and tissue reservoir characteristics in human skin layers. Skin Pharmacol Physiol. 2006;19:336–42.

    Article  CAS  PubMed  Google Scholar 

  58. Ibrahim R, Nitsche JM, Kasting GB. Dermal clearance model for epidermal bioavailability calculations. J Pharm Sci. 2012;101:2094–108.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research is supported by Unilever R&D Colworth UK, Program for New Century Excellent Talents in University (Project No. NCET-11-0477), and Program for Changjiang Scholars and Innovative Research Team in University (Project No. IRT1293). We wish to thank Cameron MacKay and Michael Davies for providing skin absorption data and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lujia Han or Guoping Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Han, L., Saib, O. et al. In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharm Res 32, 1779–1793 (2015). https://doi.org/10.1007/s11095-014-1575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1575-0

KEY WORDS

Navigation