Skip to main content

Advertisement

Log in

Formulation and Pharmacokinetics of Thermosensitive Stealth® Liposomes Encapsulating 5-Fluorouracil

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

We optimize the encapsulation and investigate the pharmacokinetics of 5-Fluorouracil (5-FU) delivered by thermosensitive stealth® liposomes (TSLs) designed to trigger drug release upon hyperthermia using focused ultrasound (FUS).

Methods

5-FU was encapsulated into liposomes made of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 either as a free molecule or complexed with copper-polyethylenimine. Heat-triggered drug release was evaluated using either a water bath or FUS. Formulation cytotoxicity was assessed on HT-29 cell line by MTS assay. Pharmacokinetics and biodistribution of 5-FU were evaluated in HT-29-tumor bearing mice.

Results

5-FU was easily encapsulated using the lipid hydration method (encapsulation efficacy of 13%) but poorly retained upon dilution. 5-FU complexation with copper-polyethylenimine improved 5-FU retention into liposomes and allowed to obtain an encapsulation efficacy of 37%. At 42°C, heat-triggered 5-FU release from TSLs was 63% using a water bath and 68% using FUS, within 10 min, whereas it remained below 20% for the non-thermosensitive formulation. The MTS assay revealed that formulation toxicity arose from 5-FU and not from the excipients. In addition, 5-FU complex encapsulation into TSLs induces a reduction of the IC50 from 115 down to 49 μM. Pharmacokinetics reveals a longer circulation of encapsulated 5-FU and a more important body exposure, although tumor passive targeting is not significantly higher than free 5-FU.

Conclusions

Complexation of 5-FU with copper-polyethylenimine appears an interesting strategy to improve 5-FU retention into TSLs in vitro and in vivo. TSLs allow heat-triggered release of the drug within 10 min at 42°C, a reasonable time for future in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

[2-14C]-5-FU:

14C-radiolabeled 5-Fluorouracil

5-FU:

5-Fluorouracil

5-FU-Cu-PEI:

5-Fluorouracil-copper-polyethylenimine complex

CHOL:

Cholesterol

Cu:

Copper (II) acetate monohydrate

Cu-PEI:

Copper-polyethylenimine complex

dH :

Hydrodynamic diameter

DLS:

Dynamic light scattering

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DSPE-PEG2000 :

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000

EDTA:

Ethylenediaminetetraacetic acid

EPR:

Enhanced permeation and retention

FBS:

Fœtal bovine serum

FDA:

Food and drug administration

FUS:

Focused ultrasound

g:

Gravitational acceleration

HPLC:

High performance liquid chromatography

HT-29:

Human colorectal adenocarcinoma cells

IC50 :

Half maximal inhibitory concentration

LTSLs:

Low temperature sensitive liposomes

MTS:

CellTiter 96® AQueous One Solution Cell Proliferation Assay

NTSLs:

Non thermosensitive liposomes

PBS:

Phosphate buffer saline

PDI:

Polydispersity index

PEG2000 :

Polyethylen glycol 2 KDa

PEI:

Polyethylenimine, ethylendiamine branched

psi:

Pound per square inch

Tm :

Phase transition temperature

TSLs:

Thermosensitive liposomes

TTSLs:

Traditional thermosensitive liposomes

UV/VIS:

Ultraviolet/visible light domains

ζ-potential:

Zeta potential

REFERENCES

  1. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–87.

    Article  CAS  PubMed  Google Scholar 

  2. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release. 2012;164:138–44.

    Article  CAS  PubMed  Google Scholar 

  3. Maillard S, Ameller T, Gauduchon J, Gougelet A, Gouilleux F, Legrand P, et al. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma. J Steroid Biochem Mol Biol. 2005;94:111–21.

    Article  CAS  PubMed  Google Scholar 

  4. Crommelinand DJA, Florence AT. Towards more effective advanced drug delivery systems. Int J Pharm. 2013;454:496–511.

    Article  Google Scholar 

  5. Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001;61:3027–32.

    CAS  PubMed  Google Scholar 

  6. Novell A, Escoffre JM, Al-Sabbagh C, Mannaris C, Fattal E, Tsapis N, Averkiou M, Bouakaz A. Role of thermal and mechanical effects on drug release from thermosensitive nanocarriers, Ultrasonics Symposium (IUS), 2012 I.E. International; 2012. pp. 1873–6.

  7. Mills JK, Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta Biomembr. 2005;1716:77–96.

    Article  CAS  Google Scholar 

  8. Needham D, Park JY, Wright AM, Tong JH. Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss. 2013;161:515–34.

    Article  CAS  PubMed  Google Scholar 

  9. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202:1290–3.

    Article  CAS  PubMed  Google Scholar 

  10. El-Khoueiryand AB, Lenz HJ. Should continuous infusion 5-fluorouracil become the standard of care in the USA as it is in Europe? Cancer Investig. 2006;24:50–5.

    Article  Google Scholar 

  11. Wilson PM, El-Khoueiry A, Iqbal S, Fazzone W, LaBonte MJ, Groshen S, et al. A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother Pharmacol. 2010;65:979–88.

    Article  CAS  PubMed  Google Scholar 

  12. MacMillan WE, Wolberg WH, Welling PG. Pharmacokinetics of fluorouracil in humans. Cancer Res. 1978;38:3479–82.

    CAS  PubMed  Google Scholar 

  13. Okeda R, Shibutani M, Matsuo T, Kuroiwa T, Shimokawa R, Tajima T. Experimental neurotoxicity of 5-fluorouracil and its derivatives is due to poisoning by the monofluorinated organic metabolites, monofluoroacetic acid and alpha-fluoro-beta-alanine. Acta Neuropathol. 1990;81:66–73.

    Article  CAS  PubMed  Google Scholar 

  14. Ozerand AY, Talsma H. Preparation and stability of liposomes containing 5-fluorouracil. Int J Pharm. 1989;55:185–91.

    Article  Google Scholar 

  15. Fresta M, Villari A, Puglisi G, Cavallaro G. 5-Fluorouracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability and fusogenic properties. Int J Pharm. 1993;99:145–56.

    Article  CAS  Google Scholar 

  16. Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, et al. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005;291:79–86.

    Article  CAS  PubMed  Google Scholar 

  17. Thomas AM, Kapanen AI, Hare JI, Ramsay E, Edwards K, Karlsson G, et al. Development of a liposomal nanoparticle formulation of 5-Fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy. J Control Release. 2011;150:212–9.

    Article  CAS  PubMed  Google Scholar 

  18. Pohlen U, Buhr H, Berger G, Ritz J-P, Holmer C. Hepatic arterial infusion (HAI) with PEGylated liposomes containing 5-FU improves tumor control of liver metastases in a rat model. Investig New Drugs. 2012;30:927–35.

    Article  CAS  Google Scholar 

  19. Li L, ten Hagen TLM, Schipper D, Wijnberg TM, van Rhoon GC, Eggermont AMM, et al. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release. 2010;143:274–9.

    Article  CAS  PubMed  Google Scholar 

  20. Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001;53:285–305.

    Article  CAS  PubMed  Google Scholar 

  21. Gaber MH, Hong KL, Huang SK, Papahadjopoulos D. Thermosensitive sterically stabilized liposomes - formulation and in-vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res. 1995;12:1407–16.

    Article  CAS  PubMed  Google Scholar 

  22. Semple SC, Chonn A, Cullis PR. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry. 1996;35:2521–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.

    Article  CAS  PubMed  Google Scholar 

  24. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ungaro F, De Rosa G, Miro A, Quaglia F. Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal. 2003;31:143–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mannaris C, Efthymiou E, Meyre M-E, Averkiou MA. In vitro localized release of thermosensitive liposomes with ultrasound-induced hyperthermia. Ultrasound Med Biol. 2013;39:2011–20.

    Article  PubMed  Google Scholar 

  27. Escoffre JM, Novell A, de Smet M, Bouakaz A. Focused ultrasound mediated drug delivery from temperature-sensitive liposomes: in-vitro characterization and validation. Phys Med Biol. 2013;58:8135–51.

    Article  PubMed  Google Scholar 

  28. Al-Jamal WT, Al-Ahmady ZS, Kostarelos K. Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia. Biomaterials. 2012;33:4608–17.

    Article  CAS  PubMed  Google Scholar 

  29. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci. 1991;88:11460–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Djanashvili K, ten Hagen TLM, Blangé R, Schipper D, Peters JA, Koning GA. Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate. Bioorg Med Chem. 2011;19:1123–30.

    Article  CAS  PubMed  Google Scholar 

  31. Allen TM, Austin GA, Chonn A, Lin L, Lee KC. Uptake of liposomes by cultured mouse bone-marrow macrophages - influence of liposome composition and size. Biochim Biophys Acta. 1991;1061:56–64.

    Article  CAS  PubMed  Google Scholar 

  32. Hare JI, Neijzen RW, Anantha M, Dos Santos N, Harasym N, Webb MS, et al. Treatment of colorectal cancer using a combination of liposomal irinotecan (Irinophore C (TM)) and 5-Fluorouracil. PLoS ONE. 2013;8:e62349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Elorza B, Elorza MA, Frutos G, Chantres JR. Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods—study of drug-release. Biochim Biophys Acta. 1993;1153:135–42.

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Yuan Y, Gao Y, Ma HM, Xu HT, Zhang XN, et al. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: in vitro and in vivo. Drug Dev Ind Pharm. 2012;38:1134–41.

    Article  CAS  PubMed  Google Scholar 

  35. Semakov AV, Blinkov AA, Gaenko GP, Vostrova AG, Molotkovsky JG. Synthesis and properties of lipophilic derivatives of 5-fluorouracil. Russ J Bioorg Chem. 2013;39:299–305.

    Article  CAS  Google Scholar 

  36. Ramsay E, Alnajim J, Anantha M, Zastre J, Yan H, Webb M, et al. A novel liposomal irinotecan formulation with significant anti-tumour activity: use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention. Eur J Pharm Biopharm. 2008;68:607–17.

    Article  CAS  PubMed  Google Scholar 

  37. Lide DR. CRC handbook of chemistry and physics, internet version 2005, http://www.hbcpnetbase.com. Boca Raton: CRC Press; 2005.

    Google Scholar 

  38. Minko S. Responsive polymer brushes. J Macromol Sci C. 2006;46:397–420.

    Article  CAS  Google Scholar 

  39. Taand T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169:112–25.

    Article  Google Scholar 

  40. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, et al. Pulsed-high intensity focused ultrasound and low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release. 2011;150:102–10.

    Article  PubMed  Google Scholar 

  42. Ninomiya K, Kawabata S, Tashita H, Shimizu N. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer. Ultrason Sonochem. 2014;21:310–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. Bmc Cancer. 2010;10:370.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wen YT, Pan SR, Luo X, Zhang X, Zhang W, Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug Chem. 2009;20:322–32.

    Article  CAS  PubMed  Google Scholar 

  45. Heggie GD, Sommadossi J-P, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-Fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987;47:2203–6.

    CAS  PubMed  Google Scholar 

  46. Jin Y, Li J, Rong LF, Lu XW, Huang Y, Xu SY. Pharmacokinetics and tissue distribution of 5-fluorouracil encapsulated by galactosylceramide liposomes in mice. Acta Pharmacol Sin. 2005;26:250–6.

    Article  CAS  PubMed  Google Scholar 

  47. Slatter D (ed.). Textbook of small animal surgery. Elsevier Science; 2003.

  48. Schroit AJ, Madsen J, Nayar R. Liposome-cell interactions—invitro discrimination of uptake mechanism and invivo targeting strategies to mononuclear phagocytes. Chem Phys Lipids. 1986;40:373–93.

    Article  CAS  PubMed  Google Scholar 

  49. Chadwick M, Rogers WI. Physiological disposition of 5-fluorouracil in mice bearing solid l1210 lymphocytic leukemia. Cancer Res. 1972;32:1045–56.

    CAS  PubMed  Google Scholar 

  50. Alvarez P, Marchal JA, Boulaiz H, Carrillo E, Velez C, Rodriguez-Serrano F, et al. 5-Fluorouracil derivatives: a patent review. Expert Opin Ther Patents. 2012;22:107–23.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURE

This research work was funded by Agence Nationale de la Recherche (ANR-2010-TecSan-007). Institut Galien Paris-Sud is a member of the Laboratory of Excellence LERMIT supported by a grant from ANR (ANR-10-LABX-33). Authors would like to thank A. Maksimenko for help with the tumor model and H. Bénech for help with PK analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Fattal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Sabbagh, C., Tsapis, N., Novell, A. et al. Formulation and Pharmacokinetics of Thermosensitive Stealth® Liposomes Encapsulating 5-Fluorouracil. Pharm Res 32, 1585–1603 (2015). https://doi.org/10.1007/s11095-014-1559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1559-0

KEY WORDS

Navigation