Skip to main content

Advertisement

Log in

Nanoparticles and the Blood-Brain Barrier: Advancing from In-Vitro Models Towards Therapeutic Significance

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The blood-brain barrier is a unique cell-based restrictive barrier that prevents the entry of many substances, including most therapeutics, into the central nervous system. A wide range of nanoparticulate delivery systems have been investigated with the aim of targeting therapeutics (drugs, nucleic acids, proteins) to the brain following administration by various routes. This review provides a comprehensive description of the design and formulation of these nanoparticles including the rationale behind individual approaches. In addition, the ability of currently available in-vitro BBB models to accurately predict the in-vivo performance of targeted nanoparticles is critically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. National Institute of Neurological Disorders and Stroke. National Institute of Neurological Disorders and Stroke. National Institute of Neurological Disorders and Stroke 2014 02-07-14. Available from: http://www.ninds.nih.gov/about_ninds/ninds_overview.htm.

  2. World Health Organization. Dementia: A public health priority. In.: World Health Organization; 2012.

  3. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord. 2013;28(3):311–8.

    PubMed  Google Scholar 

  4. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jonsson B, group Cs, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19(1):155–62.

    CAS  PubMed  Google Scholar 

  5. Thies W, Bleiler L, Alzheimer’s A. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement. 2013;9(2):208–45.

    Google Scholar 

  6. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D, et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry. 2005;10(8):782–9. 714.

    CAS  PubMed  Google Scholar 

  7. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials. 2010;31(19):5246–57.

    CAS  PubMed  Google Scholar 

  8. Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm. 2013;10(5):1533–41.

    CAS  PubMed  Google Scholar 

  9. Li Y, He H, Jia X, Lu WL, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–908.

    CAS  PubMed  Google Scholar 

  10. de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47:323–55.

    PubMed  Google Scholar 

  11. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    CAS  PubMed  Google Scholar 

  12. Sa-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol. 2012;45(2):327–47.

    CAS  PubMed  Google Scholar 

  13. Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.

    CAS  PubMed  Google Scholar 

  15. Cristante E, McArthur S, Mauro C, Maggioli E, Romero IA, Wylezinska-Arridge M, et al. Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A. 2013;110(3):832–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.

    CAS  Google Scholar 

  17. Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9 Suppl 1:S3.

    PubMed Central  PubMed  Google Scholar 

  18. Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Med Chem. 2014;6:11–24.

    Google Scholar 

  19. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104(1):29–45.

    CAS  PubMed  Google Scholar 

  21. Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov. 2002;1(2):131–9.

    CAS  PubMed  Google Scholar 

  22. Domínguez A, Álvarez A, Hilario E, Suarez-Merino B, Goñi-de-Cerio F. Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci Discov. 2013;1(1).

  23. Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech. 2002;57(5):269–88.

    CAS  PubMed  Google Scholar 

  24. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    CAS  PubMed  Google Scholar 

  25. Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target. 2006;14(4):191–214.

    CAS  PubMed  Google Scholar 

  26. Perez-Martinez FC, Guerra J, Posadas I, Cena V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res. 2011;28(8):1843–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem. 2008;107(6):1518–28.

    CAS  PubMed  Google Scholar 

  28. O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012;165(2):289–312.

    PubMed Central  PubMed  Google Scholar 

  29. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.

    CAS  PubMed  Google Scholar 

  30. Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55–70.

    PubMed Central  PubMed  Google Scholar 

  31. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharm. 2006;1(3):223–36.

    Google Scholar 

  32. De Rosa G, Salzano G, Caraglia M, Abbruzzese A. Nanotechnologies: a strategy to overcome blood-brain barrier. Curr Drug Metab. 2012;13(1):61–9.

    PubMed  Google Scholar 

  33. Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–50.

    CAS  PubMed  Google Scholar 

  34. O’Mahony AM, Godinho BM, Cryan JF, O’Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci. 2013;102(10):3469–84.

    PubMed  Google Scholar 

  35. Kreuter J. Nanoparticulate systems in drug delivery and targeting. J Drug Target. 1995;3(3):171–3.

    CAS  PubMed  Google Scholar 

  36. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184–91.

    CAS  PubMed  Google Scholar 

  37. Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–65.

    CAS  PubMed  Google Scholar 

  38. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.

    CAS  PubMed  Google Scholar 

  39. Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90(12):1927–36.

    CAS  PubMed  Google Scholar 

  40. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med. 2008;6:80.

    PubMed Central  PubMed  Google Scholar 

  41. Malhotra M, Tomaro-Duchesneau C, Saha S, Prakash S. Intranasal, siRNA delivery to the brain by TAT/MGF tagged PEGylated chitosan nanoparticles. J Pharm. 2013;2013:10.

    Google Scholar 

  42. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6–7):437–45.

    CAS  PubMed  Google Scholar 

  43. Dhuria SV, Hanson LR, Frey 2nd WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    CAS  PubMed  Google Scholar 

  44. Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, et al. Facilitated brain delivery of poly (ethylene glycol)-poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials. 2014;35(10):3384–95.

    CAS  PubMed  Google Scholar 

  45. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.

    CAS  PubMed  Google Scholar 

  46. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–74.

    CAS  PubMed  Google Scholar 

  47. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:18.

    Google Scholar 

  48. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.

    CAS  PubMed  Google Scholar 

  49. Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34(33):8511–20.

    CAS  PubMed  Google Scholar 

  50. Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146–52.

    CAS  PubMed  Google Scholar 

  51. Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28(33):4947–67.

    CAS  PubMed  Google Scholar 

  52. Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16(6):1503–11.

    CAS  PubMed  Google Scholar 

  53. Pardridge WM. Brain drug targeting and gene technologies. Jpn J Pharmacol. 2001;87(2):97–103.

    CAS  PubMed  Google Scholar 

  54. Pardridge WM. Preparation of Trojan horse liposomes (THLs) for gene transfer across the blood-brain barrier. Cold Spring Harb Protoc. 2010;2010(4):pdb prot5407.

  55. Arruebo M, Valladares M, #243, nica, Gonz, #225, lez-Fern, #225, ndez, #193, frica. Antibody-conjugated nanoparticles for biomedical applications. J Nanomater. 2009;2009.

  56. Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target. 2008;16(1):73–8.

    CAS  PubMed  Google Scholar 

  57. Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release. 2012;164(3):364–9.

    CAS  PubMed  Google Scholar 

  58. Orthmann A, Zeisig R, Suss R, Lorenz D, Lemm M, Fichtner I. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharm Res. 2012;29(7):1949–59.

    CAS  PubMed  Google Scholar 

  59. Artzner F, Zantl R, Radler JO. Lipid-DNA and lipid-polyelectrolyte mesophases: structure and exchange kinetics. Cell Mol Biol (Noisy-le-grand). 2000;46(5):967–78.

    CAS  Google Scholar 

  60. Mochizuki S, Kanegae N, Nishina K, Kamikawa Y, Koiwai K, Masunaga H, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta. 2013;1828(2):412–8.

    CAS  PubMed  Google Scholar 

  61. Chen H, Tang L, Qin Y, Yin Y, Tang J, Tang W, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci. 2010;40(2):94–102.

    CAS  PubMed  Google Scholar 

  62. Zhao M, Chang J, Fu X, Liang C, Liang S, Yan R, et al. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target. 2012;20(5):416–21.

    CAS  PubMed  Google Scholar 

  63. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97–109.

    CAS  PubMed  Google Scholar 

  64. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59(6):454–77.

    CAS  PubMed  Google Scholar 

  65. Martins S, Tho I, Reimold I, Fricker G, Souto E, Ferreira D, et al. Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm. 2012;439(1–2):49–62.

    CAS  PubMed  Google Scholar 

  66. Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target. 2005;13(3):179–87.

    PubMed  Google Scholar 

  67. University of California. A Phase I trial of Nanoliposomal CPT-11 (NL CPT-11) in Patients with recurrent high-grade Gliomas. Available from: http://clinicaltrials.gov/show/NCT00734682.

  68. University Hospital B. Phase II study evaluating the combination pegylated liposomal doxorubicin and dexamethasone for the treatment of immunocompetent patients with cerebral lymphoma relapsed or refractory to first-line chemotherapy containing high dose methotrexate (MTXHD) and / or high-dose Cytarabine. Available from: http://clinicaltrials.gov/ct2/show/NCT01848652.

  69. The University of Texas Health Science Center at San Antonio. A dual Phase 1/2, Investigator initiated study to determine the maximum tolerated dose, safety, and efficacy of rhenium nanoliposomes in recurrent Glioblastoma. Available from: http://clinicaltrials.gov/ct2/show/NCT01906385.

  70. Kabanov AV, Batrakova EV, Melik-Nubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, et al. A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release. 1992;22(2):141–57.

    CAS  Google Scholar 

  71. Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther. 2001;296(2):551–7.

    CAS  PubMed  Google Scholar 

  72. Kim JY, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170–8.

    CAS  PubMed  Google Scholar 

  73. Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem. 2006;13(15):1757–75.

    CAS  PubMed  Google Scholar 

  74. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004;4(5):484–8.

    CAS  PubMed  Google Scholar 

  75. Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm. 2006;310(1–2):213–9.

    CAS  PubMed  Google Scholar 

  76. Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 1995;41(1):44–8.

    CAS  Google Scholar 

  77. Tian X-H, Lin X-N, Wei F, Feng W, Huang Z-C, Wang P, et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine. 2011;6:445–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol. 2008;195(1–2):21–7.

    CAS  PubMed  Google Scholar 

  79. Kim D-H, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006;27(15):3031–7.

    CAS  PubMed  Google Scholar 

  80. Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121(3):156–67.

    CAS  PubMed  Google Scholar 

  81. Choonara YE, Pillay V, Ndesendo VM, du Toit LC, Kumar P, Khan RA, et al. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B: Biointerfaces. 2011;87(2):243–54.

    CAS  PubMed  Google Scholar 

  82. Kumar M, Pandey RS, Patra KC, Jain SK, Soni ML, Dangi JS, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013;61:189–95.

    CAS  PubMed  Google Scholar 

  83. Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48(3):393–405.

    CAS  PubMed  Google Scholar 

  84. Maiti PK, Çaǧın T, Wang G, Goddard WA. Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules. 2004;37(16):6236–54.

    CAS  Google Scholar 

  85. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, et al. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm. 2013;10(1):249–60.

    CAS  PubMed  Google Scholar 

  86. Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, et al. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med. 2012;4(130):130ra146.

    Google Scholar 

  87. Ye Y, Sun Y, Zhao H, Lan M, Gao F, Song C, et al. A novel lactoferrin-modified beta-cyclodextrin nanocarrier for brain-targeting drug delivery. Int J Pharm. 2013;458(1):110–7.

    CAS  PubMed  Google Scholar 

  88. Gil ES, Wu L, Xu L, Lowe TL. Beta-cyclodextrin-poly(beta-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules. 2012;13(11):3533–41.

    CAS  PubMed  Google Scholar 

  89. O’Mahony AM, O’Neill MJ, Godinho BM, Cryan JF, O’Driscoll CM. Cyclodextrins for Non-viral gene and siRNA delivery. Pharm Nanotechnol. 2012;1(1):6–14.

    Google Scholar 

  90. O’Mahony AM, Godinho BM, Ogier J, Devocelle M, Darcy R, Cryan JF, et al. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem Neurosci. 2012;3(10):744–52.

    PubMed Central  PubMed  Google Scholar 

  91. O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, et al. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-Octaarginine: towards a formulation strategy for non-viral neuronal siRNA delivery. Pharm Res. 2013;30(4):1086–98.

    PubMed  Google Scholar 

  92. O’Mahony AM, Ogier J, Darcy R, Cryan JF, O’Driscoll CM. Cationic and PEGylated amphiphilic cyclodextrins: co-formulation opportunities for neuronal sirna delivery. PLoS ONE. 2013;8(6):e66413.

    PubMed Central  PubMed  Google Scholar 

  93. O’Mahony AM, Doyle D, Darcy R, Cryan JF, O’Driscoll CM. Characterisation of cationic amphiphilic cyclodextrins for neuronal delivery of siRNA: effect of reversing primary and secondary face modifications. Eur J Pharm Sci. 2012;47(5):896–903.

    PubMed  Google Scholar 

  94. Godinho BM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm. 2013;10(2):640–9.

    CAS  PubMed  Google Scholar 

  95. Godinho BM, McCarthy DJ, Torres-Fuentes C, Beltran CJ, McCarthy J, Quinlan A, et al. Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials. 2014;35(1):489–99.

    CAS  PubMed  Google Scholar 

  96. Levy R, Shaheen U, Cesbron Y, See V. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. 2010;1.

  97. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces. 2008;66(2):274–80.

    CAS  PubMed  Google Scholar 

  98. Bonoiu AC, Bergey EJ, Ding H, Hu R, Kumar R, Yong KT, et al. Gold nanorod—siRNA induces efficient in vivo gene silencing in the rat hippocampus. Nanomed (Lond). 2011;6(4):617–30.

    CAS  Google Scholar 

  99. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;6(1):36–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Roy I, Stachowiak MK, Bergey EJ. Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomed: Nanotechnol, Biol Med. 2008;4(2):89–97.

    CAS  Google Scholar 

  101. Memorial Sloan-Kettering Cancer Center. PET imaging of patients with melanoma and malignant brain tumors using an 124I-labeled cRGDY silica nanomolecular particle tracer: A microdosing study. Available from: http://clinicaltrials.gov/ct2/show/NCT01266096.

  102. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Baoukina S, Monticelli L, Risselada HJ, Marrink SJ, Tieleman DP. The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci U S A. 2008;105(31):10803–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier and providing therapy of HIV-associated encephalopathy. Front Pharmacol. 2013;4:140.

    PubMed Central  PubMed  Google Scholar 

  105. Bonoiu A, Mahajan SD, Ye L, Kumar R, Ding H, Yong KT, et al. MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res. 2009;1282:142–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.

    CAS  PubMed  Google Scholar 

  107. Xu G, Yong KT, Roy I, Mahajan SD, Ding H, Schwartz SA, et al. Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier. Bioconjug Chem. 2008;19(6):1179–85.

    CAS  PubMed  Google Scholar 

  108. Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev. 2005;57(4):559–77.

    CAS  PubMed  Google Scholar 

  109. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, et al. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry. 2007;46(2):492–501.

    CAS  PubMed  Google Scholar 

  111. Vives E, Richard JP, Rispal C, Lebleu B. TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci. 2003;4(2):125–32.

    CAS  PubMed  Google Scholar 

  112. Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 2004;558(1–3):63–8.

    CAS  PubMed  Google Scholar 

  113. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Kim WJ, Christensen LV, Jo S, Yockman JW, Jeong JH, Kim YH, et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther. 2006;14(3):343–50.

    PubMed  Google Scholar 

  115. Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem. 2003;278(36):34141–9.

    CAS  PubMed  Google Scholar 

  116. Kaplan IM, Wadia JS, Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release. 2005;102(1):247–53.

    CAS  PubMed  Google Scholar 

  117. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther. 2004;10(6):1011–22.

    CAS  PubMed  Google Scholar 

  118. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem. 2005;280(15):15300–6.

    CAS  PubMed  Google Scholar 

  119. Vandenbroucke RE, De Smedt SC, Demeester J, Sanders NN. Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes. Biochim Biophys Acta. 2007;1768(3):571–9.

    CAS  PubMed  Google Scholar 

  120. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007;8(7):848–66.

    CAS  PubMed  Google Scholar 

  121. Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 1999;10(2):186–91.

    CAS  PubMed  Google Scholar 

  122. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997;15(6):542–6.

    CAS  PubMed  Google Scholar 

  123. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis. 2010;37(1):48–57.

    CAS  PubMed  Google Scholar 

  124. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26(11):2486–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90(11):1681–98.

    CAS  PubMed  Google Scholar 

  126. Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127.

    PubMed  Google Scholar 

  127. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3–4):253–63.

    CAS  PubMed  Google Scholar 

  128. Naik P, Cucullo L. In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Burek M, Salvador E, Forster CY. Generation of an immortalized murine brain microvascular endothelial cell line as an in vitro blood brain barrier model. J Vis Exp. 2012;66:e4022.

    PubMed  Google Scholar 

  130. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(13):1872–4.

    CAS  PubMed  Google Scholar 

  131. Watson PM, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci. 2013;14:59.

    PubMed Central  PubMed  Google Scholar 

  132. Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc. 2010;5(7):1265–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Garcia-Garcia E, Gil S, Andrieux K, Desmaele D, Nicolas V, Taran F, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci. 2005;62(12):1400–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18(8):1157–66.

    CAS  PubMed  Google Scholar 

  136. Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaele D, et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules. 2007;8(3):793–9.

    CAS  PubMed  Google Scholar 

  137. Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci. 2007;64(3):356–64.

    CAS  PubMed  Google Scholar 

  138. Hornok V, Bujdoso T, Toldi J, Nagy K, Demeter I, Fazakas C, et al. Preparation and properties of nanoscale containers for biomedical application in drug delivery: preliminary studies with kynurenic acid. J Neural Transm. 2012;119(2):115–21.

    CAS  PubMed  Google Scholar 

  139. Tian W, Ying X, Du J, Guo J, Men Y, Zhang Y, et al. Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci. 2010;41(2):232–43.

    CAS  PubMed  Google Scholar 

  140. Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 2009;30(25):4195–202.

    CAS  PubMed  Google Scholar 

  141. Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, et al. Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release. 2005;105(1–2):106–19.

    CAS  PubMed  Google Scholar 

  142. Gil ES, Li J, Xiao H, Lowe TL. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Biomacromolecules. 2009;10(3):505–16.

    CAS  PubMed  Google Scholar 

  143. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33(29):7194–205.

    CAS  PubMed  Google Scholar 

  144. Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, et al. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci. 2001;12(3):215–22.

    CAS  PubMed  Google Scholar 

  145. Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res. 2008;25(11):2674–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Franke H, Galla H, Beuckmann CT. Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protocol. 2000;5(3):248–56.

    CAS  Google Scholar 

  147. Walters EM, Agca Y, Ganjam V, Evans T. Animal models got you puzzled?: Think pig. Ann N Y Acad Sci. 2011;1245:63–4.

    PubMed  Google Scholar 

  148. Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007;15(4):253–68.

    CAS  PubMed  Google Scholar 

  149. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev. 2007;31(5):728–51.

    CAS  PubMed  Google Scholar 

  150. Luo YL, Lin L, Bolund L, Jensen TG, Sorensen CB. Genetically modified pigs for biomedical research. J Inherit Metab Dis. 2012;35(4):695–713.

    CAS  PubMed  Google Scholar 

  151. Wagner S, Kufleitner J, Zensi A, Dadparvar M, Wien S, Bungert J, et al. Nanoparticulate transport of oximes over an in vitro blood-brain barrier model. PLoS ONE. 2010;5(12):e14213.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Qiao R, Jia Q, Huwel S, Xia R, Liu T, Gao F, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano. 2012;6(4):3304–10.

    CAS  PubMed  Google Scholar 

  153. Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83–14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials. 2013;34(20):4818–30.

    CAS  PubMed  Google Scholar 

  154. Kuo YC, Shih-Huang CY. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway. J Drug Target. 2013;21(8):730–8.

    CAS  PubMed  Google Scholar 

  155. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med. 2013;5(209):209ra152.

    PubMed Central  PubMed  Google Scholar 

  156. Williams RL, Risau W, Zerwes H-G, Drexler H, Aguzzi A, Wagner EF. Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell. 1989;57(6):1053–63.

    CAS  PubMed  Google Scholar 

  157. Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res. 2003;990(1–2):95–112.

    CAS  PubMed  Google Scholar 

  158. Omidi Y, Barar J, Ahmadian S, Heidari HR, Gumbleton M. Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct. 2008;26(3):381–91.

    CAS  PubMed  Google Scholar 

  159. Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS ONE. 2012;7(3):e32568.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Yuan W, Li G, Gil ES, Lowe TL, Fu BM. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann Biomed Eng. 2010;38(4):1463–72.

    PubMed  Google Scholar 

  161. Brown RC, Morris AP, O’Neil RG. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007;1130(1):17–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Markoutsa E, Pampalakis G, Niarakis A, Romero IA, Weksler B, Couraud PO, et al. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. Eur J Pharm Biopharm. 2011;77(2):265–74.

    CAS  PubMed  Google Scholar 

  163. Salvati E, Re F, Sesana S, Cambianica I, Sancini G, Masserini M, et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-beta peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine. 2013;8:1749–58.

    PubMed Central  PubMed  Google Scholar 

  164. Ragnaill MN, Brown M, Ye D, Bramini M, Callanan S, Lynch I, et al. Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis. Eur J Pharm Biopharm. 2011;77(3):360–7.

    CAS  PubMed  Google Scholar 

  165. Dan M, Cochran DB, Yokel RA, Dziubla TD. Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery. PLoS ONE. 2013;8(11):e81051.

    PubMed Central  PubMed  Google Scholar 

  166. Georgieva JV, Brinkhuis RP, Stojanov K, Weijers CA, Zuilhof H, Rutjes FP, et al. Peptide-mediated blood-brain barrier transport of polymersomes. Angew Chem Int Ed Engl. 2012;51(33):8339–42.

    CAS  PubMed  Google Scholar 

  167. Stojanov K, Georgieva JV, Brinkhuis RP, van Hest JC, Rutjes FP, Dierckx RA, et al. In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice. Mol Pharm. 2012;9(6):1620–7.

    CAS  PubMed  Google Scholar 

  168. Chattopadhyay N, Zastre J, Wong HL, Wu XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008;25(10):2262–71.

    CAS  PubMed  Google Scholar 

  169. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30(8):783–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.

    PubMed Central  PubMed  Google Scholar 

  171. Hellinger E, Veszelka S, Toth AE, Walter F, Kittel A, Bakk ML, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm. 2012;82(2):340–51.

    CAS  PubMed  Google Scholar 

  172. Zhao S, Dai W, He B, Wang J, He Z, Zhang X, et al. Monitoring the transport of polymeric micelles across MDCK cell monolayer and exploring related mechanisms. J Control Release. 2012;158(3):413–23.

    CAS  PubMed  Google Scholar 

  173. Kirby BP, Pabari R, Chen CN, Al Baharna M, Walsh J, Ramtoola Z. Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide. J Pharm Pharmacol. 2013;65(10):1473–81.

    CAS  PubMed  Google Scholar 

  174. Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci. 2011;12:40.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip. 2012;12(10):1784–92.

    CAS  PubMed  Google Scholar 

  176. European Directorate for the Quality of Medicines and Healthcare. Alternatives to Animal Testing. Available from: https://www.edqm.eu/en/Alternatives-to-animal-testing-1483.html.

  177. Palmer AM, Alavijeh MS. Translational CNS medicines research. Drug Discov Today. 2012;17(19–20):1068–78.

    CAS  PubMed  Google Scholar 

  178. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. 2009;2009.

  180. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, et al. Brain microvessel endothelial cells responses to gold nanoparticles: in vitro pro-inflammatory mediators and permeability. Nanotoxicology. 2011;5(4):479–92.

    CAS  PubMed  Google Scholar 

  182. Ye D, Raghnaill MN, Bramini M, Mahon E, Aberg C, Salvati A, et al. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale. 2013;5(22):11153–65.

    CAS  PubMed  Google Scholar 

  183. Frigell J, Garcia I, Gomez-Vallejo V, Llop J, Penades S. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc. 2014;136(1):449–57.

    CAS  PubMed  Google Scholar 

  184. Ebrahimi Shahmabadi H, Movahedi F, Koohi Moftakhari Esfahani M, Alavi SE, Eslamifar A, Mohammadi Anaraki G et al. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumour Biol. 2014.

  185. Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats. J Drug Target. 2005;13(10):535–42.

    CAS  PubMed  Google Scholar 

  186. Kuo YC, Chung CY. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf B: Biointerfaces. 2012;91:242–9.

    CAS  PubMed  Google Scholar 

  187. Meister S, Zlatev I, Stab J, Docter D, Baches S, Stauber RH, et al. Nanoparticulate flurbiprofen reduces amyloid-beta42 generation in an in vitro blood-brain barrier model. Alzheimers Res Ther. 2013;5(6):51.

    PubMed Central  PubMed  Google Scholar 

  188. Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. J Biomater Appl. 2013;27(7):909–22.

    CAS  PubMed  Google Scholar 

  189. Chang J, Paillard A, Passirani C, Morille M, Benoit JP, Betbeder D, et al. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res. 2012;29(6):1495–505.

    CAS  PubMed  Google Scholar 

  190. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release. 2005;108(1):84–96.

    CAS  PubMed  Google Scholar 

  191. Costantino L, Gandolfi F, Bossy-Nobs L, Tosi G, Gurny R, Rivasi F, et al. Nanoparticulate drug carriers based on hybrid poly(D, L-lactide-co-glycolide)-dendron structures. Biomaterials. 2006;27(26):4635–45.

    CAS  PubMed  Google Scholar 

  192. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35(1):518–29.

    CAS  PubMed  Google Scholar 

  193. An S, Kuang Y, Shen T, Li J, Ma H, Guo Y, et al. Brain-targeting delivery for RNAi neuroprotection against cerebral ischemia reperfusion injury. Biomaterials. 2013;34(35):8949–59.

    CAS  PubMed  Google Scholar 

  194. Kratzer I, Wernig K, Panzenboeck U, Bernhart E, Reicher H, Wronski R, et al. Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier. J Control Release. 2007;117(3):301–11.

    CAS  PubMed  Google Scholar 

  195. Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine. 2014;9:575–88.

    PubMed Central  PubMed  Google Scholar 

  196. Gao H, Yang Z, Zhang S, Pang Z, Liu Q, Jiang X. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater. 2014;10(2):858–67.

    CAS  PubMed  Google Scholar 

  197. Hemmer R, Hall A, Spaulding R, Rossow B, Hester M, Caroway M, et al. Analysis of biotinylated generation 4 poly(amidoamine) (PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier. Molecules. 2013;18(9):11537–52.

    CAS  PubMed  Google Scholar 

  198. Du J, Lu WL, Ying X, Liu Y, Du P, Tian W, et al. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals. Mol Pharm. 2009;6(3):905–17.

    CAS  PubMed  Google Scholar 

  199. Qin Y, Fan W, Chen H, Yao N, Tang W, Tang J, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes. J Drug Target. 2010;18(7):536–49.

    CAS  PubMed  Google Scholar 

  200. Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–92.

    CAS  PubMed  Google Scholar 

  201. Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VS, Raymond A, et al. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology. 2014;25(5):055101.

    PubMed  Google Scholar 

  202. Markoutsa E, Papadia K, Clemente C, Flores O, Antimisiaris SG. Anti-Abeta-MAb and dually decorated nanoliposomes: effect of Abeta1-42 peptides on interaction with hCMEC/D3 cells. Eur J Pharm Biopharm. 2012;81(1):49–56.

    CAS  PubMed  Google Scholar 

  203. Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine. 2011;7(5):551–9.

    CAS  PubMed  Google Scholar 

  204. Brun E, Carriere M, Mabondzo A. In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO(2) nanoparticles. Biomaterials. 2012;33(3):886–96.

    CAS  PubMed  Google Scholar 

  205. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, et al. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci. 2013;4(10):1352–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Liu D, Lin B, Shao W, Zhu Z, Ji T, Yang C. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Appl Mater Interfaces. 2014;6(3):2131–6.

    CAS  PubMed  Google Scholar 

  207. Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mol Sci. 2014;15(2):1812–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Dadparvar M, Wagner S, Wien S, Kufleitner J, Worek F, von Briesen H, et al. HI 6 human serum albumin nanoparticles—development and transport over an in vitro blood-brain barrier model. Toxicol Lett. 2011;206(1):60–6.

    CAS  PubMed  Google Scholar 

  209. Pilakka-Kanthikeel S, Atluri VS, Sagar V, Saxena SK, Nair M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS ONE. 2013;8(4):e62241.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Kuo YC, Lee CL. Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier. Colloids Surf B: Biointerfaces. 2012;90:75–82.

    CAS  PubMed  Google Scholar 

  211. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33(11):3324–33.

    CAS  PubMed  Google Scholar 

  212. Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107(3):428–48.

    CAS  PubMed  Google Scholar 

  213. Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012;814:415–30.

    CAS  PubMed  Google Scholar 

  214. Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, et al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab. 2009;29(12):1914–23.

    CAS  PubMed  Google Scholar 

  215. Patabendige A, Skinner RA, Morgan L, Abbott NJ. A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res. 2013;1521:16–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Lockman PR, Koziara J, Roder KE, Paulson J, Abbruscato TJ, Mumper RJ, et al. In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. Pharm Res. 2003;20(5):705–13.

    CAS  PubMed  Google Scholar 

  217. Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Kang CS, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm. 2009;379(2):285–92.

    CAS  PubMed  Google Scholar 

  218. Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20(3):409–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitriona M. O’Driscoll.

Additional information

David J. Mc Carthy and Meenakshi Malhotra have made an equal contribution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mc Carthy, D.J., Malhotra, M., O’Mahony, A.M. et al. Nanoparticles and the Blood-Brain Barrier: Advancing from In-Vitro Models Towards Therapeutic Significance. Pharm Res 32, 1161–1185 (2015). https://doi.org/10.1007/s11095-014-1545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1545-6

KEY WORDS

Navigation