Skip to main content
Log in

Scale of Health: Indices of Safety and Efficacy in the Evolving Environment of Large Biological Datasets

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The interdependent relationship between pharmacology and toxicology is fundamental to the concepts of efficacy and safety of both drugs and xenobiotics. The traditional concept of establishing efficacious and tolerated doses to define a ‘therapeutic window’ appears simplistic in the context of an exponentially increasing database on molecular mechanisms and cell biology that inform our understanding of homeostasis. Recent advances in nano medicine illustrate the convergence of efficacy and safety considerations that are central to establishing a clear pathway for regulatory review. The following overview considers biological responses to the administration of nanoparticles and the scale of balanced, within a range that might be considered ‘normal’, to unbalanced, abnormal responses associated with health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4(7):411–4.

    Article  PubMed  CAS  Google Scholar 

  2. Dobrovolskaia, M.A. and S.E. McNeil, Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2007. 2 (August).

  3. Dreher KL. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci. 2004;77:3–5.

    Article  PubMed  CAS  Google Scholar 

  4. Garcia-Contreras L et al. Immediate and short-term cellular and biochemical responses to pulmonary single-dose studies of insulin and H-MAP. Pharm Res. 2001;18:1685–93.

    Article  PubMed  CAS  Google Scholar 

  5. Li R et al. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano. 2013;7(3):2352–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Schanen BC et al. Immunomodulation and T helper TH (1)/TH (2) response polarization by CeO (2) and TiO (2) nanoparticles. PLoS One. 2013;8(5):e62816.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Schanen BC et al. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano. 2009;3(9):2523–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lu D et al. Poly (lactide-co-glycolide) microspheres in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen 85B. Pharm Res. 2007;24:1834–43.

    Article  PubMed  CAS  Google Scholar 

  9. Pettis RJ, Hickey AJ. Aerosol delivery of peptide immunomodulators to rodent lungs. In: Tam JP, Kaumaya PTP, editors. Peptides frontiers of peptide science. Norwell: Kluwer/ESCOM; 1999. p. 845–6.

    Google Scholar 

  10. Tsai MY et al. Effect of influenza vaccine on markers of inflammation and lipid profile. J Lab Clin Med. 2005;145(6):323–7.

    Article  PubMed  CAS  Google Scholar 

  11. Protection, I.C.o.R., Recommendations of the ICRP. 1964, International Commission on Radiation Protection Oxford.

  12. Oberdörster, G., O. E., and J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives, 2005. 113(7): p. 823.

  13. Kirchner C et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005;5(2):331–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gopee N et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci. 2007;98(1):249–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhang L, Monteiro-Riviere N. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21(3):166–80.

    Article  PubMed  Google Scholar 

  16. Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23(7):1553–61.

    Article  PubMed  CAS  Google Scholar 

  17. Kukowska-Latallo JF et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317–24.

    Article  PubMed  CAS  Google Scholar 

  18. Farokhzad OC et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Delehanty JB et al. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug Chem. 2006;17(4):920–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gref R et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18(3–4):301–13.

    Article  PubMed  CAS  Google Scholar 

  21. Moore A, Weissleder R, Bogdanov A. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging. 1997;7(6):1140–5.

    Article  PubMed  CAS  Google Scholar 

  22. Zahr A, Davis C, Pishko M. Macrophage uptake of core-shell nanoparticles surface modified with poly (ethylene glycol). Langmuir. 2006;22:8178.

    Article  PubMed  CAS  Google Scholar 

  23. Berg JM et al. The relationship between pH and Zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3(4):276–83.

    Article  CAS  Google Scholar 

  24. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97(1):163–80.

    Article  PubMed  CAS  Google Scholar 

  25. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.

    Article  PubMed  CAS  Google Scholar 

  26. St John AL, Abraham SN. Innate immunity and its regulation by mast cells. J Immunol. 2013;190(9):4458–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Tait Wojno ED, Artis D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe. 2012;12(4):445–57.

    Article  PubMed  CAS  Google Scholar 

  28. Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Ext Rev. 2012;11(2):237–56.

    CAS  Google Scholar 

  29. Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12(7):479–91.

    Article  PubMed  CAS  Google Scholar 

  30. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Marichal T et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17(8):996–1002.

    Article  PubMed  CAS  Google Scholar 

  32. Tewary P. Beta-defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-alpha production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol. 2013;19(2):865–74.

    Article  Google Scholar 

  33. Yasuda K et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174(10):6129–36.

    Article  PubMed  CAS  Google Scholar 

  34. Chang H et al. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp Toxicol Pathol. 2013;65(6):887–96.

    Article  PubMed  CAS  Google Scholar 

  35. Sun, B., et al., Engineering an Effective Immune Adjuvant by Designed Control of Shape and Crystallinity of Aluminum Oxyhydroxide Nanoparticles. ACS Nano, 2013.

  36. Katwa P et al. A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3) (3)/ST (2) axis. Small. 2012;8(18):2904–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Worthington KL et al. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology. 2013;24(39):395101.

    Article  PubMed  Google Scholar 

  38. Noah TL et al. Nasal cytokine production in viral acute upper respiratory infection of childhood. J Infect Dis. 1995;171(3):584–92.

    Article  PubMed  CAS  Google Scholar 

  39. Moro MR et al. Clinical features, adenovirus types, and local production of inflammatory mediators in adenovirus infections. Pediatr Infect Dis J. 2009;28(5):376–80.

    Article  PubMed  Google Scholar 

  40. Laham FR et al. LDH concentration in nasal-wash fluid as a biochemical predictor of bronchiolitis severity. Pediatrics. 2010;125(2):e225–33.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Semmler-Behnke M et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airway epithelium. Environ Health Perspect. 2007;115(5):728–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Oberdorster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Moller W et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med. 2008;177(4):426–32.

    Article  PubMed  Google Scholar 

  44. Geiser M et al. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol. 2008;38(3):371–6.

    Article  PubMed  CAS  Google Scholar 

  45. Hellstrand E et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009;276(12):3372–81.

    Article  PubMed  CAS  Google Scholar 

  46. Lundqvist M et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS USA. 2008;105(38):14265–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Dawson KA, Salvati A, Lynch I. Nanoparticles reconstruct lipids. Nat Nanotechnol. 2009;4(2):84–5.

    Article  PubMed  CAS  Google Scholar 

  48. Gao D et al. Bioeliminable Nanohydrogels for drug delivery. Nano Lett. 2008;8(10):3320–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Hickey AJ, Smyth HDC. Pharmaco-complexity. New York: Springer; 2011.

    Book  Google Scholar 

  50. Cheng J et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Wang X et al. Poly (γ-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J Med Virol. 2008;80(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  52. Kalkanidis M et al. Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods. 2006;40(1):20–9.

    Article  PubMed  CAS  Google Scholar 

  53. Conway MA et al. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine. 2001;19(15–16):1940–50.

    Article  PubMed  CAS  Google Scholar 

  54. Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat Biotechnol. 1999;17:1075.

    Article  PubMed  CAS  Google Scholar 

  55. Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis. 1999;5(4):285–94.

    Article  PubMed  CAS  Google Scholar 

  56. Ankley G. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–41.

    Article  PubMed  CAS  Google Scholar 

  57. Schultz, T.W., B. Diderich, and S. Enoch, The OECD adverse outcome pathway approach: A case study for skin sensitization, in AXLR8-2 Workshop Report, T. Seidle and H. Spielmann, Editors. 2011, OECD: http://axlr8.eu/assets/axlr8-progress-report-2011.pdf. p. 288–300.

Download references

Acknowledgments and Disclosures

CMS would like to thank the CDC National Institute for Occupational Safety and Health (NIOSH) and AJH would like to thank the National Institutes of Health (NIH) and the Nanomaterial Registry (www.nanomaterialregistry.org/) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayes, C.M., Staats, H. & Hickey, A.J. Scale of Health: Indices of Safety and Efficacy in the Evolving Environment of Large Biological Datasets. Pharm Res 31, 2256–2265 (2014). https://doi.org/10.1007/s11095-014-1415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1415-2

Key Words

Navigation